

ADVANCED TRAINING

Steel Connections

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2021 SCIA nv. All rights reserved.

Table of Contents

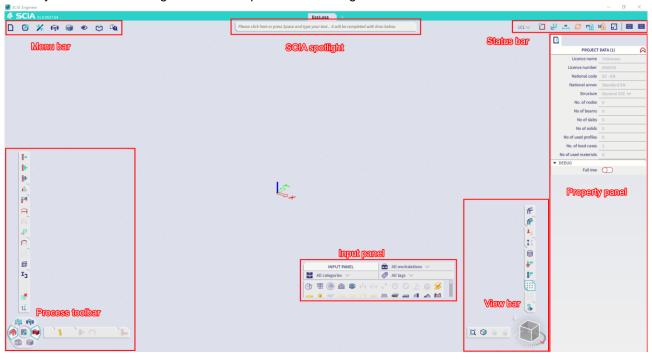
Table	e of Contents		3
1.	Introducti	on	6
2.	Possible o	connections in SCIA Engineer	7
3.		of a small example in SCIA Engineer	
		deling the example	
	3.2. Inpu	ut of the connection	10
4.		the connection (unity check)	
		neral data	
	4.2. Colu	umn web panel in shear	18
	4.3. Colu	umn web in compression	18
	4.4. Bea	ım flange and web in compression	19
	4.5. Res	sistance of the T-stub	20
	4.5.1.	Principle of a T-stub calculation	20
	4.5.2.	Bolts info	23
	4.5.3.	Column flange	23
	4.5.4.	End plate	32
	4.5.5.	Potential tension resistance for each bolt row	40
	4.6. Calo	culation of MRd	40
	4.7. Calc	culation of NRd	43
	4.8. Calo	culation of VRd	45
	4.9. Wea	ak axis resistances	46
	4.9.1. E	Bending moment resistance	47
	4.9.1.1.	. Column flange in bending	48
	4.9.1.2.	. End plate in bending	48
	4.9.1.3.	. Beam flange in compression	49
	4.9.1.4.	. Column flange in twisting	50
	4.9.1.5.	. Column web in bending	50
	4.9.2.	Shear force resistance	51
	4.10. L	Jnity checks	52
	4.10.1.	Influence of the normal force	52
	4.10.2.	General unity checks	52
5.	Stiffness of	of the connection	53
	5.1. The	Moment-Rotation characteristic	53
	5.2. Cald	culation of the stiffness	53
	5.2.1.	General formulas	53
	5.2.2.	Calculation of the stiffness in detail	55
	5.3. The	classification on stiffness	61

	5.4.	Tran	sferring the joint stiffness to the analysis model	63
	5.5.	The	required stiffness	66
6.	Calc	ulatio	n of welds	.70
	6.1.	Calc	ulation of a _f	70
	М	inimur	n for full strength	70
	C	alculat	ted from connection resistance	70
	C	alculat	ted using Internal forces	71
	6.2.	Calc	ulation of a _w	71
	6.3.	Calc	ulation with the internal forces	72
7.	Duct	ility c	lass	.73
	7.1.	Duct	tility classes	73
	7.2.	Duct	tility classification for bolted joints	73
	7.3.	Duct	tility classification for welded joints	74
8.	Extra	a optic	ons in SCIA Engineer	.75
	8.1.	RHS	beam	75
	8.2.	Colu	ımn in minor axis configuration	75
	8.3.	Base	e plate connections: shear iron, flange wideners	76
	8.4.	Extr	a options for the calculation of connections	76
	8.	4.1.	Copy of connections	77
	8.	4.2.	Multiple check of connections	77
	8.	4.3.	Expert system	77
	8.	4.4.	The use of 4 bolts / row	78
	8.	4.5.	Monodrawings	79
9.	Weld	led co	nnections	.81
10.	Pinn	ed joi	nts	.86
	10.1.	V	/elded fin plate connection	86
	10	0.1.1.	Calculation Design Shear Resistance VRd for Connection Element	87
	10	0.1.2.	Calculation Design Shear Resistance VRd for Beam	87
	10	0.1.3.	Calculation Compression/Tension Resistance NRd for connection element	87
	10	0.1.4.	Calculation Design Tension Resistance NRd for Beam	88
	10	0.1.5.	Weld size Calculation for Plate, Beam and Column	88
	10.2.	В	olted fin plate connection	90
	10	0.2.1.	Calculation Design Shear Resistance VRd for Connection Element	90
	10	0.2.2.	Calculation Design Shear Resistance VRd for Beam	91
	10	0.2.3.	Calculation Design Shear Resistance VRd for Bolt in Beam	91
	10	0.2.4.	Calculation Design Block Shear Resistance Vrd - beam	92
	10	0.2.5.	Calculation Design Block Shear Resistance Vrd – connection element (beam	side) 93
	10	0.2.6.	Calculation Design Compression/Tension Resistance NRd for Connection Ele	ment 94

	10.2.7	7. Calculation Design Compression/Tension Resistance NRd for Beam	94
	10.3.	Bolted cleat connection	95
	10.4.	Flexible end plate connection	95
11.	Hollows	section joints96	
	11.1.	Joint configuration	96
	11.1.1.	Automatic recognition	96
	11.1.2.	Gap / Overlap	98
	11.2.	Validation tests	99
	11.2.1.	Redistribution of bending moment caused by eccentricity of brace members	99
	11.2.2.	General scope and field of application	. 100
	11.2.3.	Range of validity for CHS chord and CHS brace members	. 101
	11.3.	Design resistance	. 103
	11.3.1.	Uniplanar joints	105
	11.3.2.	Chord stress	. 105
	11.3.3.	Identification of brace members	. 105
	11.3.4.	Welded joints between CHS members	. 106
	11.3.4.1.	Axial force resistance	. 106
	11.3.4.2.	Bending moment resistance	. 106
	11.3.5.	Special types of welded joints	. 106
	11.3.6.	Design of welds	. 107
12.	Referen	ces and literature108	

1. Introduction

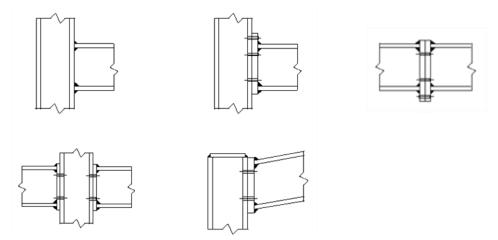
This course will explain the calculation of steel connections in SCIA Engineer following the EN 1993-1-8: Design of steel structures – Part 1-8: Design of joints.

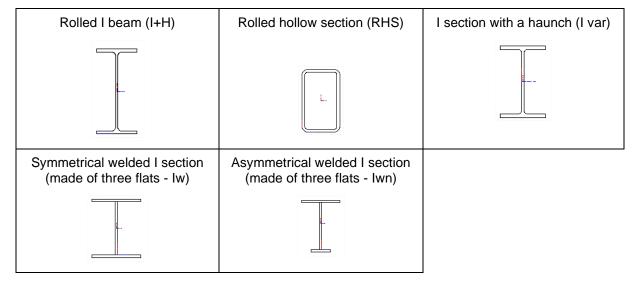

Most of the options in the course can be calculated/checked in SCIA Engineer with the **Steel edition**.

For some supplementary checks an extra module (or edition) is required, but this will always be indicated in those paragraphs.

The design methods for connection design are explained. More details and references to the applied articles can be found in (Ref.[2]).

The following chapters are valid for the bolted and welded column-beam joints. The design methods for the beam-column joints are principally for moment-resisting joints between I or H sections in which the beams are connected to the flanges of the column. In this document we will describe the total procedure for this type of connection. The other connection types can be found at the end of this document.

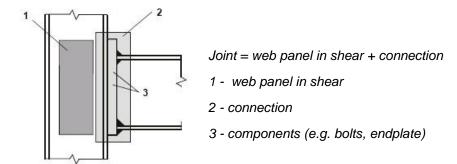

Below you can find an image of the workspace of SCIA Engineer and where to find the different menus.


2. Possible connections in SCIA Engineer

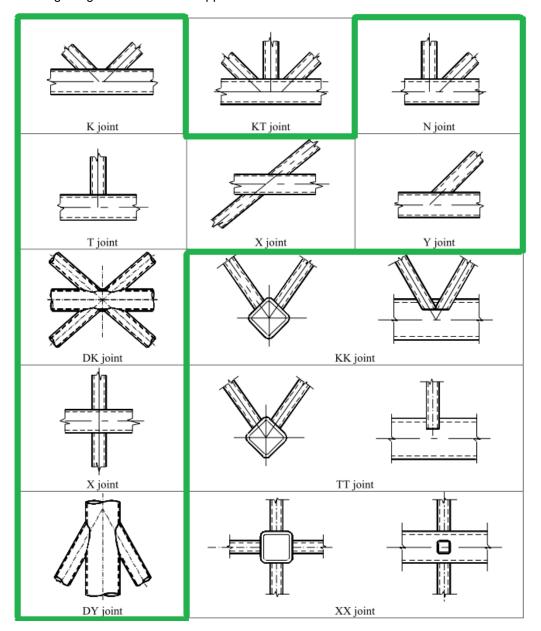
The design methods for the column-beam joints are taken from EN 1993-1-8. More detailed information about the applied rules and specific implementations are found in Ref.[1].

The following column-beam and beam-beam connections are possible in SCIA Engineer:

Only the following cross-sections can be used for connections in SCIA Engineer:


The possible combinations of supported cross-sections with relevance to a geometric connection type is indicated in the tables below. Column base connections support all cross-sections.

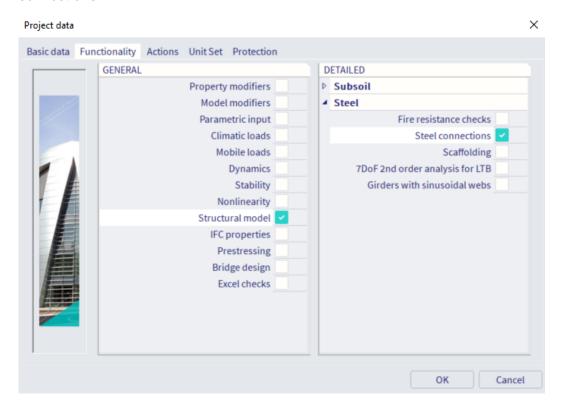
		Beam				
		Rolled I+H	lw	lwn	I section + haunch	RHS
	Rolled I+H	yes	yes	yes	yes	yes
=	iw	yes	yes		yes	yes
I =	lwn	yes	yes	yes	yes	yes
ပြ	I section + haunch	no	no	по	no	по
Ľ	RHS	no	no	по	no	по


				Beam		
		Rolled I+H	lw	Iwn	I section + haunch	RHS
	Rolled I+H	yes				
⊑	W	yes	yes			
ea	lwn	yes	yes	yes		
m	I section + haunch	yes	yes	yes	yes	
	RHS	yes	yes	yes	yes	yes

It is important to mention that in this context, beam is the entity connected to a column. It is perfectly possible that a column may be horizontal and a beam vertical.

In the checks in SCIA Engineer not only the connection itself will be checked, but also the total joint. A joint is the connection and the web panel in shear, as shown in the picture below.

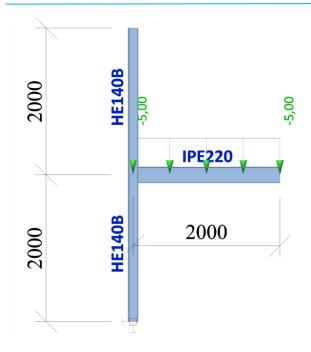
Since SCIA Engineer 17.0, it is also possible to design truss connections of circular hollow sections. The following image shows what is supported so far:



3. Creation of a small example in SCIA Engineer

3.1. Modeling the example

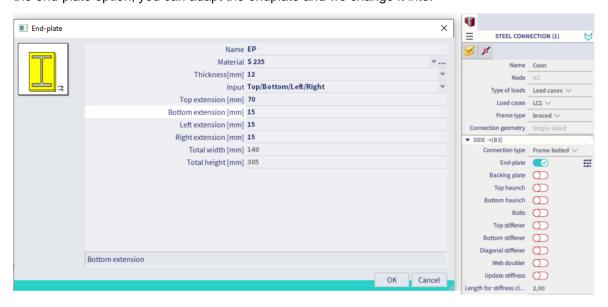
First in this chapter a small example in SCIA Engineer will be shown. Afterwards all principles and the theoretical background will be explained in the next chapter.


Create a new project in **Frame XYZ**, activate the material **Steel S235** and activate the functionality **Steel connections:**

The following options are available for connections:

Frame strong-axis:	Calculation of bolted and welded (rigid and semi-rigid) connections for the strong axis of the column
Fame weak-axis:	Calculation of bolted and welded (rigid and semi-rigid) connections for the weak axis of the column
Pinned grid connections:	Calculation of pinned connection in the horizontal plane
Bolted diagonal connections:	Calculation of bolted diagonals
Hollow section joints:	Calculation of welded tubes in trusses
Expert system:	Use a library with default connections in SCIA Engineer or add your own connections to this library
Connection monodrawings:	Make some nice overview drawings of your connection(s)

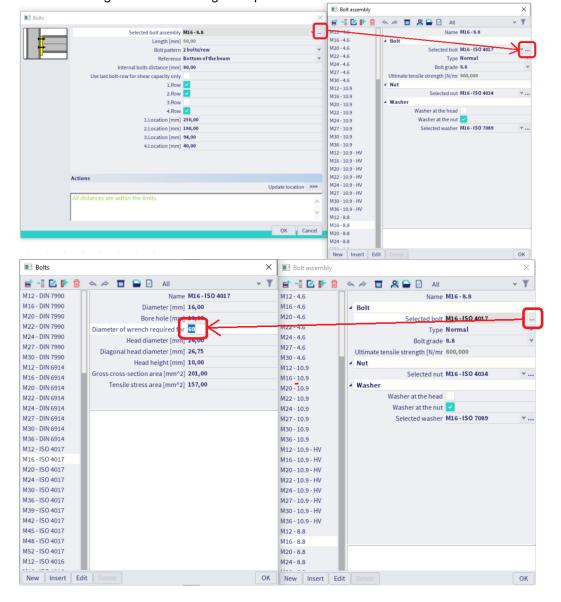
Choose for the column a **HE140B** profile and for the beam an **IPE220** with the following geometry and the only load is a **line load of 5 kN/m on the beam** (no self weight).


3.2. Input of the connection

Calculate the model and go to the **Steel** branch of the process toolbar.

The beam is connected with the strong axis of the column, so we choose "Frame strong-axis" from the input panel by filtering to **Steel > Steel Connections**. Click on this option and select the node between the column and the beam to input the connection.

In the properties window of the connection, you can activate what you want to add on the connection. We choose for a **Frame bolted** connection and we add an end-plate. By clicking on the manage button behind the end-plate option, you can adapt the endplate and we change it into:



= STEEL CONNECTION (1) Bolts X Selected bolt assembly M16 - 8.8 Name Conn Length [mm] 50,00 Bolt pattern 2 bolts/row Type of loads Load cases \ Reference Bottom of the beam Load cases LC1 V Internal bolts distance [mm] 80,00 Frame type braced Use last bolt-row for shear capacity only netry 1.Row Connection type Frame bolted > 2.Row End-plate 3.Row = Backing plate 4.Row Top haunch 1.Location [mm] 250,00 Bottom haunch 2.Location [mm] 180,00 = 3.Location [mm] 94,00 Top stiffener 4.Location [mm] 40,00 0 agonal stiffener Web doubler Actions Update stiffness Update location >>> Output ▼ STIFFENERS Between bolt-rows 12 Between bolt-rows 23

Afterwards we can also add some bolts and change them again by clicking on the manage button behind it:

Remark: by default you will get warnings for the bolt locations, modify the wrench diameter from 80mm to 60mm to solve it. In reality you'll need to apply the correct wrench diameter in order to be able to fasten the bolts. See images below to change this parameter:

een bolt-rows 3.4

To check the connection, you have to click on refresh.

With the option "Open Preview" you can have a summary output of the connection:

Steel connection

Name	Conn
Node	N2
Connection type	Frame bolted
Connection geometry	Single-sided
Calculation type	Internal forces
Lc/Combi	LC1

Connection analysis (summary): Side [B3]

Internal forces

NEd	0.00	kN
Vz,Ed	10.00	kN
My,Ed	-10.00	kNm
Vy,Ed	0.00	kN
Mz,Ed	0.00	kNm

...:STRONG-AXIS CALCULATION:...

Design resistances

Mj,y,Rd	36.65	kNm
Nj,Rd	245.40	kN
Vz,Rd	154.02	kN

Limiting parts

In tension	End plate in tension		
In compression	Column web in shear		

Stiffness

Sj,ini	10.9694	MNm/rad
Sj	10.9694	MNm/rad

Classification	System SEMI RIGID
Stiffness check	Not ok

...:WEAK-AXIS CALCULATION:...

Design resistances

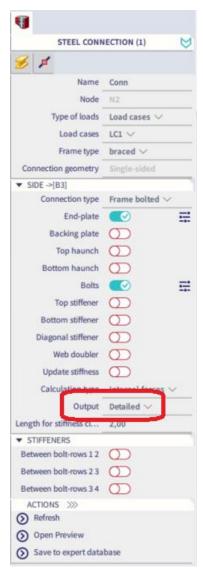
Mj,z,Rd	1.82	kNm
Vy,Rd	144.47	kN

Stiffness

Sj,ini	0.0885	MNm/rad
Sj	0.0885	MNm/rad

...::RESULTS::...

Unity checks


My,Ed/Mj,y,Rd	0.27
Mz,Ed/Mj,z,Rd	0.00
NEd/Nj,Rd	0.00
Vz,Ed/Vz,Rd	0.06
Vy,Ed/Vy,Rd	0.00
Vz,Ed/Vz,Rd + Vy,Ed/Vy,Rd	0.06
My,Ed/Mj,y,Rd + Mz,Ed/Mj,z,Rd	0.27

The calculated unity checks and stiffness's will be explained in detail in the following chapters.

4. Check of the connection (unity check)

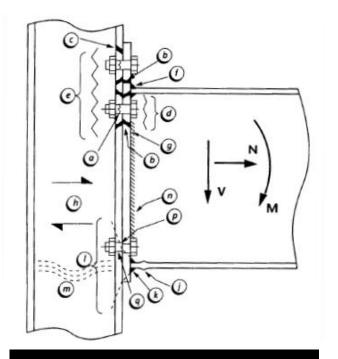
The whole check of the chapters below will be discussed using the example made in the chapter "Creation of a small example in SCIA Engineer" or using example "CON 004.esa".

When looking in SCIA Engineer at the detailed output you will find the detailed calculation of SCIA Engineer.

In this document we will describe all checks in SCIA Engineer step by step based on EN 1993-1-8. Ref.[1].

The general analytical procedure which is used for determining the resistance and stiffness properties of a joint, is the so-called component method. The component method considers any joint as a set of individual basic components. Each of these basic components possesses its own strength and stiffness. The application of the component method requires the following steps:

- 1. identification of the active components in the joint being considered
- 2. evaluation of the stiffness and/or resistance characteristics for each individual basic component
- assembly of all the constituent components and evaluation of the stiffness and/or resistance characteristics of the whole joint


Three steps	F)M=F.h
First step: Definition of the components	Column web in shear Column web in tension
Second step: Response of the components	$F_{Rd_1} = F_{Rd_2} = F_{Rd_3} $
Third Step: Assembling of the components	Stiffness of the joint $S_{j,i} = E \ h^2 \ / \ \Sigma \ l/k_i$ Resistance of the joint $M_{Rd} = min \ (F_{Rd,i}) \cdot h$

In the following tables all different components are shown:

	Component				
1	Column web panel in shear	V _{Ed}	7	Beam or column flange and web in compression	F _{c,Ed}
2	Column web In transverse compression		8	Beam web in tension	F _{t,Ed}
3	Column web in transverse tension	Ft.Ed	9	Plate in tension or compression	$ \begin{array}{c c} F_{t,Ed} \\ \hline \\ F_{c,Ed} \\ \hline \end{array} \qquad \begin{array}{c} F_{t,Ed} \\ \hline \\ F_{c,Ed} \\ \hline \end{array} $
4	Column flange in bending	→ F _{t,Ed}	10	Bolts in tension	← ↑ F _{t,Ed}
5	End-plate in bending	F _{t,Ed}	11	Bolts in shear	F _{v,Ed}
6	Flange cleat in bending	F _{t,Ed}	12	Bolts in bearing (on beam flange, column flange, end-plate or cleat)	↑F _{b,Ed}

MV - 2021/05/31 15

13	Concrete in compression including grout	
14	Base plate in bending under compression	
15	Base plate in bending under tension	
16	Anchor bolts in tension	
17	Anchor bolts in shear	
18	Anchor bolts in bearing	
19	Welds	
20	Haunched beam	1

Tension	a	bolts in tension
	b	end plate bending
	С	column flange bending
	d	beam web tension
	e	column web tension
	[f]	flange to end plate weld
	[g]	web to end plate weld
Horizontal shear	h	column web panel shear
Compression	j	beam flange compression
	[k]	beam flange weld
	1, m	column web in compression
Vertical shear	[n]	web to end plate weld
	p	bolt shear
	q	bolt bearing

4.1. General data

In the preview in SCIA Engineer, first general data is shown about the used sections, the used bolts, ...

Steel connection

Name	Conn
Node	N2
Connection type	Frame bolted
Connection geometry	Single-sided
Calculation type	Internal forces
Lc/Combi	LC1

Connected beams

Name	Cross-section	Material	Length	Beg. node	End node	Туре
		-	[m]		16	
B1	CS1 - HE140B	S 235	2,000	N1	N2	column (100)
B2	CS1 - HE140B	S 235	2,000	N2	N3	column (100)
В3	CS2 - IPE220	S 235	2,000	N2	N4	beam (80)

Parts of connection: Side [B3]

Bolts

M16 - 8.8	l.		
Name		Bolt pattern	2 bolts/row
Internal bolts	80,00	External bolts	,
distance [mm]		distance [mm]	
Length [mm]	50,00	Reference	Bottom of the beam
1.Location [mm]	250,00	2.Location [mm]	180,00
3.Location [mm]		4.Location [mm]	40,00

End-plate

End			
Material	S 235	Left extension [mm]	15,00
Thickness[mm]	12,00	Right extension [mm]	15,00
Input	Top/Bottom/Left/Right	Total width [mm]	140,00
Top extension [mm]	70,00	Total height [mm]	305,00
Bottom extension	15,00		
[mm]			

Afterwards the safety factors according EN 1993-1-8 are shown:

Connection analysis: Side [B3]
According to EN 1993-1-8
National annex: Standard EN

 Partial safety factors

 Gamma M0
 1.00

 Gamma M1
 1.00

 Gamma M2
 1.25

 Gamma M3
 1.25

Those safety factors can be adapted in the National Annex Setup in SCIA Engineer.

And afterwards the internal forces are shown for the chosen load case or combination:

1. Internal forces

LC1		
NEd	0.00	kN
Vz,Ed	10.00	kN
My,Ed	-10.00	kNm
Vy,Ed	0.00	kN.
Mz,Ed	0.00	kNm

Tension top

Note: NEd <= 0.05 * Npl,Rd,Beam.

The internal forces, shown here, will result in the biggest unity check or in a stiffness check which is not okay.

You can see in this example that we have a negative moment My, so we have tension in the top flange of the beam. If we have tension in the bottom flange of the beam, the whole calculation is the same, but the first bolt-row will be taken as the bottom one.

Next the calculation of the connection will be shown, both for strong-axis as the weak-axis side.

4.2. Column web panel in shear

As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.1:

$$V_{wp,Rd} = \frac{0.9 f_{y,w} A_v}{\sqrt{3} \gamma_{M0}}$$

Shear area of the column:

$$A_{vc} = A - 2 \cdot b \cdot t_f + (t_w + 2r) \cdot t_f$$

$$A_{vc} = 4300 - 2 \cdot 140 \cdot 12 + (7 + 2 \cdot 12) \cdot 12 = 1312 \text{ mm}^2$$

$$V_{wp,Rd} = \frac{0.9 f_{y,w} A_v}{\sqrt{3} \gamma_{M0}} = \frac{0.9 \cdot 235 \cdot 1312}{\sqrt{3} \cdot 1} \cdot 10^{-3} = 160, 21 \text{ kN}$$

In SCIA Engineer:

- 2. Design moment resistance Mj,y,Rd
- 2.1. Design resistance of basic components
- 2.1.1. Column web panel in shear

According to EN 1993-1-8 Article 6.2.6.1

Vwp,Rd data				
Beta	1.00			
Avc	1312.00	mm ²		
Vwp,Rd	160.21	kN		

4.3. Column web in compression

As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.2:

(6.9):
$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}} \quad \text{but} \qquad F_{c,wc,Rd} \leq \frac{\omega \cdot k_{wc} \cdot \rho \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M1}}$$

(6.11):
$$b_{eff} = t_{fb} + 2\sqrt{2}a_p + 5(t_{fc} + s) + s_p$$

$$s_n = 12 + (15 - \sqrt{2} \cdot 5) = 19,93$$

Above the bottom flange, there is sufficient room to allow 45° dispersion

Below the bottom flange, there is NOT sufficient room. Thus the dispersion is limited.

$$b_{eff} = 9.2 + 2\sqrt{2} \cdot 5 + 5(12 + 12) + 19.93 = 163.27mm$$

Table 5.4: $β = 1 \Rightarrow$ Table 6.3: $ω = ω_1$

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc} \cdot \frac{t_{wc}}{A_{vc}})^2}} = \frac{1}{\sqrt{1 + 1.3(163.27 \cdot \frac{7}{1312})^2}} = 0.71$$

 $k_{wc} = 1$

$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}} = \frac{0.71 \cdot 1 \cdot 163.27 \cdot 7 \cdot 235 \cdot 10^{-3}}{1} = 190,56 \ kN$$

In SCIA Engineer:

2.1.2. Column web in compression

According to EN 1993-1-8 Article 6.2.6.2

Fc,wc,Rd	data	
beff,c,wc	163.27	mm
twc	7.00	mm
ω1	0.71	
ω2	0.45	
ω	0.71	
dwc	92.00	mm
λp,rel	0.55	
ρ	1.00	
kwc	1.00	
Fc,wc,Rd	190.56	kN

4.4. Beam flange and web in compression

As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.7:

(6.21):
$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{(h-t_{fb})} = \frac{W_{pl} \cdot f_{yb}}{\gamma_{M0} \cdot (h-t_{fb})}$$

$$M_{c,Rd} = \frac{W_{pl} \cdot f_{yb}}{\gamma_{M0}} = \frac{285 \cdot 10^3 mm^3 \cdot 235 \cdot 10^{-3} kN/mm^2}{1} = 66975 \ kNmm = 66,98 \ kNm$$

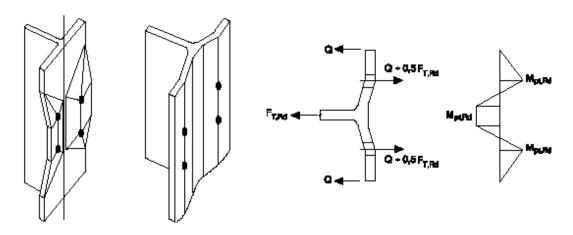
$$h - t_{fb} = 220 - 9,2 = 210,80 \ mm$$

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{(h-t_{fb})} = \frac{66975 \ kNmm}{210,80 \ mm} = 317,72 \ kN$$

In SCIA Engineer:

2.1.3. Beam flange and web in compression

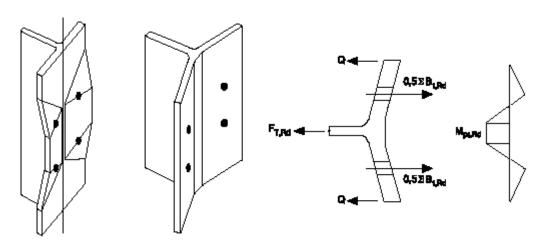
According to EN 1993-1-8 Article 6.2.6.7


Fc,fb,Rd data		
Section class	1	
Mc,Rd	66.97	kNm
hb-tfb	210.80	mm
Fc,fb,Rd	317.72	kN

4.5. Resistance of the T-stub

4.5.1. Principle of a T-stub calculation

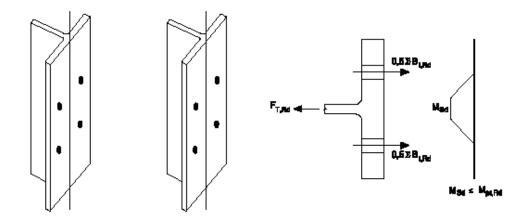
The end plate bending and the column flange bending or bolt yielding, are analysed, using an equivalent T-stub. The three possible modes of failure of the flange of the T stub and the resistance strength for each mode are:


1. complete flange yielding

The bolts stay intact, only the column flange (or end plate) will yield.

$$F_{T,1,Rd} = rac{4 M_{pl,1,Rd}}{m}$$
 with: $M_{pl,1,Rd} = 0.25 \sum l_{eff,1} t_f^2 f_y / \gamma_{M0}$

2. bolt failure with flange yielding



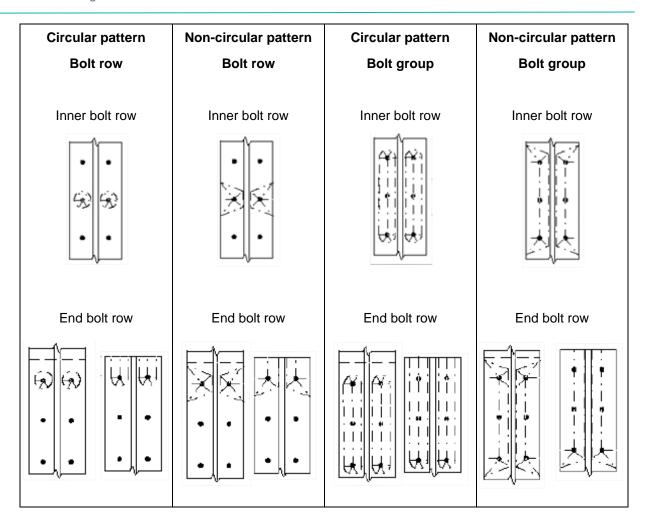
The bolts brake together with the yielding of the column flange (or end plate).

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$
 with: $M_{pl,2,Rd} = 0.25\sum l_{eff,2}t_f^2 f_y/\gamma_{M0}$

20 MV -2021/05/31

3. bolt failure

The bolts brake. But there is no influence on the column flange (or end plate).


$$F_{T.3.Rd} = \sum F_{t.Rd}$$

And the minimum of $F_{T,1,Rd}$, $F_{T,2,Rd}$ and $F_{T,3,Rd}$ is the limiting tension strength value for the bolt row or bolt group:

 $F_{t,Rd} = min(F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd})$

For the failure of the end plate or column flange, an effective length for the different bolt locations will be calculated.

We will assume the effective length for a bolt row or a bolt group and the failure mode could be with a circular pattern or with a non-circular pattern. In the table below some examples are shown for the circular and the non circular patterns:

Remark: The formulas given for the calculation of F_{T,Rd} for the different failure mode are only applicable if Prying forces may develop. This criterion is given in EN 1993-1-8, Table 6.2:

Table 6.2: Design Resistance $F_{T,Rd}$ of a T-stub flange Prying forces may develop, i.e. $L_b \leq L_b^*$ No prying forces Mode 1 Method 1 Method 2 (alternative method) without $F_{\rm T,1,Rd} = \frac{(8n - 2e_w) M_{pl,1,Rd}}{2mn - e_w (m+n)}$ $F_{\mathrm{T},1,\mathrm{Rd}} = \frac{4M_{pl,1,Rd}}{m}$ backing plates $F_{\text{T},1-2,\text{Rd}} = \frac{2M_{pl,1,Rd}}{m}$ $F_{\rm T,1,Rd} = \frac{4M_{\it pi,1,Rd} + 2M_{\it bp,Rd}}{m} \qquad F_{\rm T,1,Rd} = \frac{(8n - 2e_{\it w})M_{\it pi,1,Rd} + 4nM_{\it bp,Rd}}{2mn - e_{\it w}(m+n)}$ with backing plates $F_{\mathrm{T,2,Rd}} = \frac{2M_{\mathit{pl,2,Rd}} + n\Sigma F_{\mathit{t,Rd}}}{m+n}$ Mode 2 $F_{\text{T.3.Rd}} = \sum F_{t,Rd}$ Mode 3

If no prying forces may develop, Mode 1 and 2 will be calculated as follows:

$$F_{T,1-2,Rd} = \frac{2M_{pl,2,Rd}}{m}$$

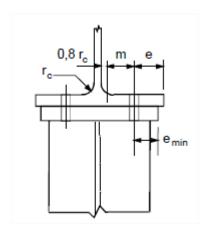
4.5.2. Bolts info

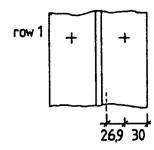
From the general data of the used bolts (M16 - 8.8) the tension resistance of one bolt can be calculated as follows:

$$F_{t,Rd} = \frac{0.9 \cdot f_{ub} \cdot A_s}{\gamma_M} = \frac{0.9 \cdot 800 \text{ MPa} \cdot 157 \text{ mm}^2}{1.25} = 90432 \text{ N} = 90,43 \text{ kN}$$

2.1.4. Design tension resistance of bolt-row

According to EN 1993-1-8 Article 3.6


Ft,Rd data					
fub	800.00	N/mm ²			
As	157.00	mm ²			
k2	0.90	-			
Ft,Rd	90.43	kN			
Lb	38.80	mm			


Note: The bolt-rows are numbered starting from the bolt-row farthest from the centre of compression as given by EN 1993-1-8 Article 6.2.7.2 (1).

4.5.3. Column flange

4.5.3.1. General parameters

First some definitions of the parameters, following EN 1993-1-8 (Ref[1]), Figure 6.8 a:

$$e = 30 mm$$

$$m = \frac{b_c - t_{wc}}{2} - 0.8r - e$$

(see also EN1993-1-8 (Figure 6.8))

$$m = (140 - 7)/2 - 0.8 \cdot 12 - 30$$

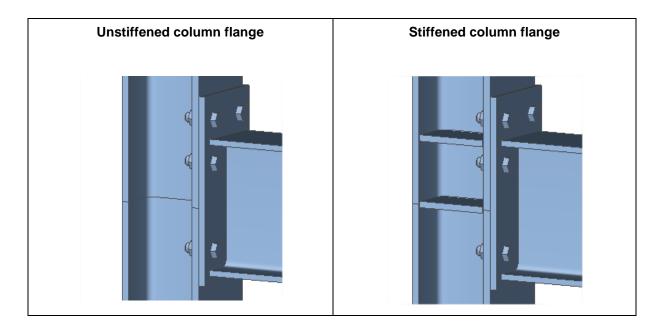
= 26.9 mm

$$e_{min} = 30 \ mm$$

$$n=e_{min}$$

$$\leq 1,25 \cdot m = 1,25 \cdot 26,9 = 33,6mm$$

(see also EN1993-1-8 (Table 6.2)) n = 30mm


	$p(p_1 + p_2)$
1	0.0 + 35.0 35.0 + 70.0 70.0 + 0.0
2	35.0 + 70.0
3	70.0 + 0.0

And this is also shown in SCIA Engineer:

row	p (p1+p2)	e	e1	m	n
1	0.00+35.00	30.00	1860.00	26.90	30.00
2	35.00+70.00	30.00	-	26.90	30.00
3	70.00+0.00	30.00	1930.00	26.90	30.00

To calculate the column flange, we need to choose between the effective lengths of an unstiffened column flange (Table 6.4 En 1993-1-8 - Ref.[1]) or for the effective lengths of a stiffened column flange (Table 6.5 EN 1993-1-8 - Ref.[1]).

In this case the column flange is unstiffened. In the table below the difference is shown:

So in this example the following table is used for the calculation of the effective lengths:

Table 6.4: Effective lengths for an unstiffened column flange					
Bolt-row	Bolt-row considered individually		Bolt-row considered as part of a group of bolt-		
Location	Circular patterns ℓ _{eff,cp}	Non-circular patterns _{leff,nc}	Circular patterns ℓ _{eff,cp}	Non-circular patterns ℓ _{eff,nc}	
Inner bolt-row	$2\pi m$	4m + 1,25e	2p	p	
End bolt-row	The smaller of: $2\pi m$ $\pi m + 2e_1$	The smaller of: 4m + 1,25e $2m + 0,625e + e_1$	The smaller of: $\pi m + p$ $2e_1 + p$	The smaller of: 2m + 0.625e + 0.5p $e_1 + 0.5p$	
Mode 1:	$\ell_{\rm eff,l} = \ell_{\rm eff,nc}$ bu	t $\ell_{\text{eff},1} \leq \ell_{\text{eff,cp}}$	$\sum \ell_{eff,1} = \sum \ell_{eff,nc}$ but	$\sum \ell_{\text{eff,1}} \leq \sum \ell_{\text{eff,cp}}$	
Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\sum \ell_{eff,2} = \sum \ell_{eff,nc}$		

This table of the EN1993-1-8 has been extended in SCIA Engineer based on the publications "Joints in Steel Construction – Moment resisting joints to Eurocode 3" and "HERON vol. 20 by P. Zoetemeijer". You can find the effective length formulas for column flange classifications in the table below.

Bolt-row classification	Bolt-row considered individually		Bolt-row considered as part of a group of bolt-rows	
	circular	non-circular	circular	non-circular
Bolt-row adjacent to stiffener	2πm	2πm αm		0,5p + αm - (2m + 0,625e)
Other inner bolt-row	2πm	4m + 1,25e	2p	р
Other end bolt-row at end of column	2πm	4m + 1,25e	πm + p	2m + 0,625e + 0,5p
Other end boit-row at end of column	πm + 2e1	2m + 0,625e + e1	2e1+p	e1 + 0,5p
	2πm	αm		
End bolt-row adjacent to stiffener	πm + 2e1	e1 + αm	-	-
		- (2m + 0,625e)		
Other end bolt-row	2πm	4m + 1,25e	πm + p	2m + 0,625e + 0,5p
Bolt-row between stiffeners	2πm	αm + α'm - (4m + 1,25e)	-	-

Within SCIA Engineer, a bolt row may be classified on a column side as:

Bolt-row adjacent to stiffener - if the bolt row lies next to a stiffener and is within limit distance

Other inner bolt-row - if the bolt-row lies between other bolt-rows

Other end bolt-row - if the bolt-row lies next to a stiffener, which is farther away to the axis of a connected beam, and is outside the limit distance

End bolt-row adjacent to stiffener - if the bolt-row is the first or the last bolt-row, lies next to a stiffener, which is closer to the axis of a connected beam

Other end bolt-row at end of column - if the bolt-row is the first or the last bolt-row, lies next to a stiffener, which is closer to the axis of a connected beam, and is outside the limit distance or if the bolt-row is the first or the last bolt-row and does not lie next to a stiffener

Bolt-row between stiffeners - if the bolt row is the only bolt-row between stiffeners and lies within the limit distance of both stiffeners

First we choose for each bolt row the classification/location.

In this example:

Row 1 and Row 3: Other end bolt-row at end of column

Row 2: Other inner bolt-row

And the same is shown in SCIA Engineer:

2.1.4.1. Column flange

According to EN 1993-1-8 Article 6.2.6.3, 6.2.6.4 (effective lengths in mm, resistance in kN)

row	m2U	m2L	limit	near stiff. U	near stiff. L Classification	
1	-	-	-	-	-	Other end bolt-row at end of column
2	-	-	-	-	- Other inner bolt-row	
3	-	-	-	-	-	Other end bolt-row at end of column

4.5.3.2. Ft,fc,Rd of bolt rows considered individually

The calculation of leff can be done using Table 6.4. of the EN 1993-1-8 (Ref.[1]).

Row 1

leff circular patterns: the smaller of:

$$2\pi m = 2*3.14*26,9 = 169,02$$

$$\pi$$
m + e₁ = 3.14*26,9 + 1860 = 1944,51

leff non-circular patterns: the smaller of:

$$4m + 1,25e = 4*26,9 + 1,25*30 = 145,10$$

$$2m + 0.625e + e_1 = 2*26.9 + 0.625*30 + 1860 = 1932.55$$

Row 2

leff circular patterns: $2\pi m = 2*3.14*26,9 = 169,02$

 l_{eff} non-circular patterns: 4m + 1,25e = 4*26,9 + 1,25*30 =**145,10**

Row 3

leff circular patterns: the smaller of:

$$2\pi m = 2*3.14*26,9 = 169,02$$

$$\pi$$
m + e₁ = 3.14*26,9 + 1930 = 2014,51

leff non-circular patterns: the smaller of:

$$4m + 1,25e = 4*26,9 + 1,25*30 = 145,10$$

$$2m + 0.625e + e_1 = 2*26.9 + 0.625*30 + 1930 = 2002.55$$

Row	l _{eff} circular patterns	l _{eff} non-circular patterns
1	169,02	145.10
2	169,02	145.10
3	169,02	145.10

In SCIA Engineer:

row	leff,cp,i	leff,nc,i
1	169.02	145.10
2	169.02	145.10
3	169.02	145.10

And now from the bottom of Table 6.4:

Mode 1:	$\ell_{\text{eff},1} = \ell_{\text{eff},nc}$ but $\ell_{\text{eff},1} \leq \ell_{\text{eff},1}$	€ _{eff,cp}
Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$	

So this results in:

Mode 1 :
$$I_{eff,1} = I_{eff,nc}$$
 but $I_{eff,1} \le I_{eff,cp}$ => $I_{eff,1} = 145.10$
Mode 2 : $I_{eff,2} = I_{eff,nc}$ => $I_{eff,2} = 145.10$

Now we can calculate $M_{pl,1,Rd}$ and $M_{pl,2,Rd}$ for the two modes, with the formula given at the bottom of Table 6.2 of the EN 1993-1-8 (Ref.[1])

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 145,10 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 1227.5 \; kNm$$

To decide which formula we are using for the calculation of $F_{T,1,Rd}$ and $F_{T,2,Rd}$ we have to check if **prying** forces may develop.

L_b is the bolt elongation length, taken as equal to the grip length (total thickness of material and washers), plus half the sum of the height of the bolt head and the height of the nut.

Lb =
$$t_f + t_p + t_{washer} + (h_{bolt_head} + h_{nut})/2$$

= $12 + 12 + 3,3 + (10 + 13)/2$
= $38,8$ mm

Prying forces may develop if L_b ≤ L_b*

A is the tensile stress area of the bolt As

$$L_b^* = \frac{8.8 \, m^3 \, A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \, (26.9)^3 \cdot 157}{145.10 \cdot (12)^3} \cdot 1 = 107 \, mm$$
 (see formula in Table 6.2 of EN 1993-1-8 (Ref.[1]))

(with n_b = number of bolt rows)

$$\Rightarrow \ L_b < L_b^*$$

⇒ Prying forces may develop

So now we can use the formulas given in Table 6.2 En 1993-1-8 (Ref.[1]) to calculate the different mode. The effective lengths for all bolt-rows are the same so:

Mode 1

By default the alternative method is used for determining $F_{T,1,Rd}$, this can be changed in the connections setup > structural joints: 'Use alternative method for Ft,1,Rd'

$$F_{T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn - e_w(m+n)} = \frac{(8\cdot30 - 2\cdot6,75)\cdot1227,5}{2\cdot26.9\cdot30 - 6.75\cdot(26.9+30)} = 225,5 \ kN$$

Mode 2:

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot 1227,5 + 30\cdot 2\cdot 90,43}{26,9 + 30} = 138,5 \ kN$$

Mode 3:

$$F_{T.3.Rd} = \sum F_{t.Rd} = 2 \cdot 90,43 = 180,9 \, kN$$

$$\Rightarrow$$
 $F_{T,fc,Rd} = 138,5 \, kN \text{(smalles of the three modes)}$

All those results are shown in SCIA Engineer:

Note: The Alternative method for FT,1,Rd according to EN 1993-1-8 Article 6.2.4, Table 6.2 is used.

For individual bolt-row:

row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,fc,Rd,i
1	145.10	145.10	107.26	✓	225.53	138.51	180.86	138.51
2	145.10	145.10	107.26	✓	225.53	138.51	180.86	138.51
3	145.10	145.10	107.26	✓	225.53	138.51	180.86	138.51

The value for Lb was given already in the data of the bolts itself:

2.1.4. Design tension resistance of bolt-row

According to EN 1993-1-8 Article 3.6

Ft,Rd data						
fub	800.00	N/mm ²				
As	157.00	mm ²				
k2	0.90	-				
Ft.Rd	90.43	kN				
Lb	38.80	mm				

4.5.3.3. Column web in tension for the individual bolt rows

The design resistance of an unstiffened column web subject to transverse tension should be determined from:

$$F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}}$$
 (see also EN 1993-1-8 : 2005; formula (6.15) – Ref.[1])

With: $b_{eff,t,wc} = l_{eff} = 145,10$

And ω , to allow for the possible effects of shear in the column web panel, should be determined from Table 6.3 (EN 1993-1-8):

Table 6.3: Reduction factor ω for interaction with shear

Transformation parameter β	Reduction factor ω			
$0 \leq \beta \leq 0,5$	ω = 1			
0,5 < β < 1	$\omega = \omega_1 + 2(1 - \beta)(1 - \omega_1)$			
$\beta = 1$	$\omega = \omega_1$			
1 < β < 2	$\omega = \omega_1 + (\beta - 1)(\omega_2 - \omega_1)$			
β = 2	$\omega = \omega_2$			
$\omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc} t_{wc} / A_{vc})^2}}$	$\omega_2 = \frac{1}{\sqrt{1 + 5.2(b_{\text{eff,c,wc}} t_{\text{wc}} / A_{\text{vc}})^2}}$			
A_{vc} is the shear area of the column, see 6.2.6.1; β is the transformation parameter, see 5.3(7).				

And:

Table 5.4: Approximate values for the transformation parameter $\,eta$

Type of joint configuration	Action	Value of β					
M _{b1,Ed}	$M_{ m b1,Ed}$	β ≈ 1					
_ ^¬	$M_{\rm b1,Ed} = M_{\rm b2,Ed}$	$\beta = 0$ *)					
M b2,Ed M b1,Ed M b2,Ed M b1,Ed	$M_{\rm b1,Ed} / M_{\rm b2,Ed} > 0$	$\beta \approx 1$					
	$M_{\rm b1,Ed} / M_{\rm b2,Ed} < 0$	$\beta \approx 2$					
	$M_{\rm b1,Ed} + M_{\rm b2,Ed} = 0$	$\beta \approx 2$					
*) In this case the value of β is the exact value rather than an approximation.							

In this example:

$$\beta = 1$$
 $\omega = \omega_1$

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}}$$

$$A_{vc} = A - 2 \cdot b_c \cdot t_{fc} + (\boldsymbol{t_{wc}} + 2\boldsymbol{r_c}) \cdot t_{fc}$$

$$A_{vc} = 4296 - 2 \cdot 140 \cdot 12 + (\mathbf{7} + \mathbf{2} \cdot \mathbf{12}) \cdot 12 = 1308 \, mm^2$$

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(145,10.7/1308)^2}} = 0,75$$

$$\Rightarrow F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = \frac{0.75 \cdot 145,10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$$\Rightarrow F_{T.wc.Rd} = 179 kN$$

In SCIA Engineer:

row	beff,t,wc	twc	ω1	ω2	ω	Ft,wc,Rd,i
1	145.10	7.00	0.75	0.49	0.75	178.95
2	145.10	7.00	0.75	0.49	0.75	178.95
3	145.10	7.00	0.75	0.49	0.75	178.95

4.5.3.4. Ft,fc,Rd of bolt rows considered as part of a group

ROW 1

Left circular begin bolt-row = πm + pend = 3,14 * 26,9 + 70 = 154,51

Left non circular begin bolt-row = 2m + 0.625e + 0.5p = 2*26.9 + 0.625*30 + 0.5*70 = 107.55

ROW 2

 L_{eff} circular inner bolt-row = 2p = 2 * (35.0 + 70.0) = 210

L_{eff} non circular inner bolt-row = p = 35.0 + 70.0 = 105

Left circular end bolt-row = πm + p_{end} = 3,14 * 26,9 + 70 = 154,51

Left non circular end bolt-row = 2m + 0.625e + 0.5p = 2*26.9 + 0.625*30 + 0.5*70 = 107.55

ROW 3

Left circular end bolt-row = πm + p_{end} = 3,14 * 26,9 + 140 = 224,51

Left non circular end bolt-row = 2m + 0.625e + 0.5p = 2*26.9 + 0.625*30 + 0.5*140 = 142.55

Summary:

Row	l _{eff} circular	leff non circular	l _{eff} circular	leff non circular	l _{eff} circular	l _{eff} non circular
	inner bolt-row	inner bolt-row	end bolt-row	end bolt-row	begin bolt-row	begin bolt-row
1	-	-	-	-	154,51	107,55
2	210.00	105.00	154.51	107,55	224,51	142,55
3	-	-	224,51	142,55	-	-

In SCIA Engineer:

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,g,start
1	-	-	-	-	154.51	107.55
2	210.00	105.00	154.51	107.55	224.51	142.55
3	-	-	224.51	142.55	-	-

Mode 1:
$$\sum l_{eff,1} = \sum l_{eff,nc}$$
 but $\sum l_{eff,1} \leq \sum l_{eff,cp}$

Mode 2 :
$$\sum l_{eff,2} = \sum l_{eff,nc}$$

Row 1-1: not considered, same as the individual bolt row.

Row 1-2:

$$\sum l_{eff,cp} = 154.10 + 154.50 = 309.02$$

$$\sum l_{eff,nc} = 107.55 + 107.55 = 215.10$$

Mode 1 = Mode 2 : I_{eff} = 215.10

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 215.1 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 1819.8 \; kNm$$

Prying forces may develop if $L_b \leq L_b^{\star}$

 $L_b = 38,8mm$

$$L_b^* = \frac{8.8 \, m^3 \, A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \, (26.9)^3 \cdot 157}{215.10 \cdot (12)^3} \cdot 2 = 145 \, mm$$

(with $n_b = number of bolt rows)$

- $\Rightarrow \ L_b < L_b^*$
- ⇒ Prying forces may develop

Mode 1:
$$F_{T,1,Rd} = \frac{(8n-2e_W)M_{pl,1,Rd}}{2mn-e_W(m+n)} = \frac{(8\cdot30-2\cdot6,75)\cdot1819,8}{2\cdot26.9\cdot30-6.75\cdot(26.9+30)} = 335,13 \ kN$$

Mode 2:
$$F_{T,2,Rd} = \frac{{}^{2M}_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{{}^{2\cdot 1819,8 + 30\cdot 4\cdot 90,43}}{{}^{26,9 + 30}} = 254,7~kN$$

Mode 3:
$$F_{T,3,Rd} = \sum F_{t,Rd} = 4 \cdot 90,43 = 361,7 \ kN$$

$$\Rightarrow F_{T.Rd} = 254,7 \ kN$$

Row 1-3:

$$\sum l_{eff,cp} = 154.51 + 210.00 + 224.51 = 589.02$$

$$\sum l_{eff,nc} = 107.55 + 105.00 + 142.55 = 355.10$$

Mode 1 = Mode 2 : I_{eff} = 355.10

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 355.1 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 3004.1 \ kNm$$

Prying forces may develop if $L_b \le L_b^*$

 $L_b = 38,8mm$

$$L_b^* = \frac{8.8 \, m^3 \, A_S}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \, (26.9)^3 \cdot 157}{355.10 \cdot (12)^3} \cdot 3 = 131 \, mm$$

(with n_b = number of bolt rows)

$$\Rightarrow L_b < L_b^*$$

⇒ Prying forces may develop

Mode 1:
$$F_{T,1,Rd} = \frac{(8n-2e_w)M_{pl,1,Rd}}{2mn-e_w(m+n)} = \frac{(8\cdot30-2\cdot6,75)\cdot3004,1}{2\cdot26.9\cdot30-6.75\cdot(26.9+30)} = 553,2 \ kN$$

Mode 2:
$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot3004,1+30\cdot6\cdot90,43}{26.9+30} = 391,7 \ kN$$

Mode 3:
$$F_{T,3,Rd} = \sum F_{t,Rd} = 6 \cdot 90,43 = 542,6 \text{ kN}$$

$$\Rightarrow F_{T.Rd} = 391,7 \ kN$$

Row 2-3:

$$\sum l_{eff,cp} = 224.51 + 224.51 = 449.02$$

$$\sum l_{eff,nc} = 142.55 + 142.55 = 285.10$$

Mode 1 = Mode 2 : I_{eff} = 285.10

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum_{leff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 285.1 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 2411.9 \text{ kNm}$$

Prying forces may develop if $L_b \le L_b^*$

 $L_b = 38,8mm$

$$L_b^* = \frac{{}^{8,8}\,{}^{m^3}A_s}{\sum {}^{l}{}^{l}{}_{eff}t_f^3} \cdot n_b = \frac{{}^{8,8}\,(26,9)^3 \cdot 157}{285,10 \cdot (12)^3} \cdot 2 = 109,2 \; mm$$

(with $n_b = number of bolt rows)$

$$\Rightarrow L_b < L_b^*$$

⇒ Prying forces may develop

Mode 1:
$$F_{T,1,Rd} = \frac{(8n-2e_w)M_{pl,1,Rd}}{2mn-e_w(m+n)} = \frac{(8\cdot30-2\cdot6,75)\cdot2411.9}{2\cdot26.9\cdot30-6.75\cdot(26.9+30)} = 444,2 \ kN_{pl,1,Rd}$$

Mode 2:
$$F_{T,2,Rd} = \frac{{}^{2M}p_{l,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{{}^{2\cdot 2411.9 + 30\cdot 6\cdot 90,43}}{26,9+30} = 275.5 \ kN$$

Mode 3:
$$F_{T,3,Rd} = \sum F_{t,Rd} = 4 \cdot 90,43 = 361,72 \text{ kN}$$

$$\Rightarrow F_{T,Rd} = 275, 5 \, kN$$

In SCIA Engineer:

For group of bolt-rows:

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,fc,Rd,g
1- 2	215.10	215.10	144.71	✓	334.34	254.68	361.73	254.68
1- 3	355.10	355.10	131.48	✓	551.95	391.67	542.59	391.67
2- 3	285.10	285.10	109.18	✓	443.14	275.50	361.73	275.50

4.5.3.5. Column web in tension for bolt rows considered as part of a group

Row 1-2:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(215,10.7/1312)^2}} = 0.61$$

$$\Rightarrow \quad F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = \frac{0.61 \cdot 215,10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$$\Rightarrow F_{T,wc,Rd} = 214,86 \, kN$$

Row 1-3:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(355,10.7/1312)^2}} = 0,42$$

$$\Rightarrow \quad F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = \frac{0.42 \cdot 355,10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$$\Rightarrow$$
 $F_{T,wc,Rd} = 245,40 kN$

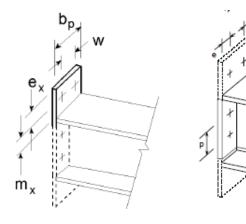
Row 2-3:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(285,1.7/1312)^2}} = 0,50$$

$$\Rightarrow F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc}t_{wc}f_{y,wc}}{\gamma_{M0}} = \frac{0.50 \cdot 285,10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$$\Rightarrow$$
 $F_{T,wc,Rd} = 234,26 \, kN$

In SCIA Engineer:


group	beff,t,wc	ω1	ω2	ω	Ft,wc,Rd,g
1- 2	215.10	0.61	0.36	0.61	214.86
1- 3	355.10	0.42	0.23	0.42	245.40
2- 3	285.10	0.50	0.28	0.50	234.26

4.5.4. End plate

We can repeat the whole principle of the column flange calculation on the end plate. In this case we are using Table 6.6 of the EN 1993-1-8 (Ref.[1]).

4.5.4.1. General parameters

First some definitions of the parameters, following EN 1993-1-8 (Ref[1]), Figure 6.8 a:

Some picture from Figure 6.10 of EN 1993-1-8.

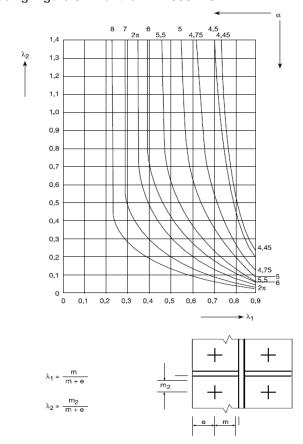
For the end-plate extension, use e_x and m_x in place of e and e when determining the design resistance of the equivalent T-stub flange.

Row 1

 $\begin{array}{l} e_x = h_{endplate} - h_{row1} - distance_{Endplate_under-IPE220_under} \\ e_x = 305 - 250 - 15 = 40 \end{array}$

fyd	Weld size
≤ 240 N/mm²	$a_f \ge 0.5 t_{fD}$
	a _w ≥ 0.5 t _{wb}
> 240 N/mm²	$a_f \ge 0.7 t_{fb}$
	a _w ≥ 0.7 t _{wb}

$$\begin{array}{lll} a_f &=& 0.5 \cdot t_{fb} &=& 0.5 \cdot 9.2 = 4.6 & => & a_f &=& 5 \ mm \\ m_x &=& Top - e_x - 0.8 \cdot a \cdot \sqrt{2} & \text{(see also EN1993-1-8 (Figure 6.10))} \\ m_x &=& (305 - 220 - 15) - 40 - 0.8 \cdot 5 \cdot \sqrt{2} = 24.34 \end{array}$$


$$n = e_{min} = 40$$
mm
 $\leq 1,25 \cdot m = 1,25 \cdot 24,34 = 30,42$ mm

n=30,42mm

w = 80 mm

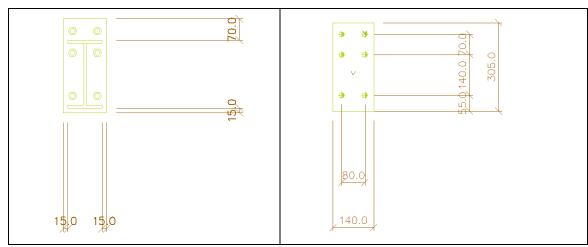
Row 2 and Row 3

Using Figure 6.11 of the EN 1993-1-8

e = 30 mm

fyd	Weld size
≤ 240 N/mm²	$a_f \ge 0.5 t_{fb}$
	a _w ≥ 0.5 t _{wb}
> 240 N/mm²	$a_f \ge 0.7 t_{fb}$
	a _w ≥ 0.7 t _{wb}

$$a_w = 0.5 \cdot t_{wb} = 0.5 \cdot 5.9 = 3.0$$


$$m = \frac{b_{endplate} - t_{wc}}{2} - e - 0.8 \cdot a \cdot \sqrt{2}$$
 (see also EN1993-1-8 (Figure 6.10))

$$m = \frac{140-5,9}{2} - 30 - 0,8 \cdot 3 \cdot \sqrt{2} = 33,66 \text{ mm}$$

$$n = e_{min} = 30$$
mm

$$\leq 1,25 \cdot m = 1,25 \cdot 33,66 = 42,01mm$$

n = 30 mm

$$m_{2,row2} = e_x - t_f - 0.8 \cdot a_f \cdot \sqrt{2}$$

$$m_{2,row2} = (35 + \frac{9.2}{2}) - 9.2 - 0.8 \cdot 5 \cdot \sqrt{2} = 24.74 \text{ mm}$$

$$m_{2,row3} = h_{row3} - t_f - 0.8 \cdot a_f \cdot \sqrt{2}$$

$$m_{2,row3} = 35 + \frac{9,2}{2}) - 9,2 - 0,8 \cdot 5 \cdot \sqrt{2} = 24,74$$
mm

$$\lambda_1 = \frac{m}{m+e} = \frac{33,66}{33,66+30} = 0,53$$

$$\lambda_{2,row2} = \lambda_{2,row3} = \frac{m_{2,row2}}{m+e} = \frac{24,74}{33,66+30} = 0,39$$

⇒ Alpha = 5,77 (Figure 6.6; EN 1993-1-8)

Row	p (p ₁ + p ₂)	е	m	n	Lambda_1	Lamba_2	alpha
1	0.0 + 35.0	40 (= e _x)	24,34	30,42	-	-	-
2	35.0 + 70.0	30	33,66	30	0,53	0,39	5,99
3	70.0 + 0.0	30	33,66	30	0,53	0,39	5,99

In SCIA Engineer:

row	p (p1+p2)	e	ex	m	mx	n	λ10	λ2U	aU	λ1L	λ2L	aL
1	0.00+0.00	30.00	40.00	-	24.34	30.43	-	-	-	-	-	-
2	0.00+70.00	30.00	-	33.66	-	30.00	0.53	0.39	5.77	-	-	-
3	70.00+0.00	30.00	-	33.66	-	30.00	-	-	-	0.53	0.39	5.77

To calculate the end plate Table 6.6 of the EN 1993-1-8 - Ref.[1] is used.

Table 6.6: Effective lengths for an end-plate

Bolt-row	Bolt-row considered individually		Bolt-row considered as part of a group of bolt-rows		
location	Circular patterns ℓ _{eff,cp}	Non-circular patterns (eff.nc	Circular patterns	Non-circular patterns leffnc	
Bolt-row outside tension flange of beam	Smallest of: $2\pi m_x$ $\pi m_x + w$ $\pi m_x + 2e$	Smallest of: $4m_x + 1,25e_x$ $e+2m_x+0,625e_x$ $0,5b_p$ $0,5w+2m_x+0,625e_x$	_	_	
First bolt-row below tension flange of beam	2πm	ат	$\pi m + \mathbf{p}$	$0.5p + \alpha m$ - $(2m + 0.625e)$	
Other inner bolt-row	$2\pi m$	4m + 1,25 e	2p	p	
Other end bolt-row	$2\pi m$	4m + 1,25 e	$\pi m + p$	2m+0,625e+0,5p	
Mode 1:	$\ell_{eff,1} = \ell_{eff,nc} \ but \ \ell_{eff,1} \leq \ell_{eff,cp}$		$\textstyle \sum \ell_{eff,1} = \sum \ell_{eff,nc} \ but \ \textstyle \sum \ell_{eff,1} \leq \sum \ell_{eff,cp}$		
Mode 2: $\ell_{\text{eff,2}} = \ell_{\text{eff,nc}}$			$\sum \ell_{\rm eff,2} = \sum \ell_{\rm eff,nc}$		
α should be obtain	ned from Figure 6.11.				

This table of the EN1993-1-8 has been extended in SCIA Engineer based on the publications "Joints in Steel Construction – Moment resisting joints to Eurocode 3" and "HERON vol. 20 by P. Zoetemeijer". You can find the effective length formulas for end plates in the table below.

Bolt-row classification		row considered individually	Bolt-row considered as part of a group of bolt-rows		
	circular	non-circular	circular	non-circular	
	2πmx	4mx + 1,25ex			
Bolt-row outside of beam	πmx + w	e + 2mx + 0,625ex			
Boit-row outside of beam	πmx + 2ex	0,5bp	-		
	-	0,5w + 2mx + 0,625ex			
Bolt-row adjacent to beam flange	2πm	αm	πm + p	0,5p + αm - (2m + 0,625e)	
Other inner bolt-row	2πm	4m + 1,25e	2p	р	
Other end bolt-row	2πm	4m + 1,25e	πm + p	2m + 0,625e + 0,5p	
Dale and the and of wiffered	2πm	αm	-777		
Bolt-row at the end of stiffened extension adjacent to beam flange	πm + 2ex	αm - (2m + 0,625e) + ex	-	-	
Bolt-row at the end of stiffened	2πm	4m + 1,25e	2ex + p	ex + 0,5p	
extension away from beam flange	πm + 2ex	2m + 0,625e + ex	πm + p	2m + 0,625e + 0,5p	
Bolt-row between flanges	2πm	$\alpha m + \alpha' m - (4m + 1,25e)$	-	-	

Within Scia Engineer, a bolt row may be classified on an end-plate side as:

Bolt-row outside of beam - if the bolt-row lies outside of the connected beam on an ustiffened endplate extension (no plate haunch is present)

Bolt-row adjacent to beam flange - if the bolt-row lies next to a beam flange and is within limit distance

Other inner bolt-row - if the bolt-row lies between other bolt-rows

Other end bolt-row - if the bolt-row lies next to a beam flange, which is farther away to the axis of a connected beam, and is outside the limit distance or lies on a stiffened end-plate extension, lies next to a beam flange and is outside limit distance

Bolt-row at the end of stiffened extension adjacent to beam flange - if the bolt-row is the first or the last bolt-row, lies on a stiffened end-plate extension, lies next to a beam flange and is within limit distance

Bolt-row at the end of stiffened extension away from beam flange - if the bolt-row is the first or the last bolt-row, lies on a stiffened end-plate extension, lies next to a beam flange and is outside limit distance or if the bolt-row is the first or the last bolt-row, lies on a stiffened end-plate extension and does not lie next to a beam flange

When looking at the previous table we can make the following bolt-row locations:

Row 1: Bolt-row outside of beam

Row 2: Bolt-row adjacent to beam flange

Row 3: Bolt-row adjacent to beam flange

And the same bolt-row location will be shown in SCIA Engineer:

2.1.4.2. End-plate

According to EN 1993-1-8 Article 6.2.6.5, 6.2.6.8 (effective lengths in mm, resistance in kN)

row	m2U	m2L	limit	near flange U	near flange L	Classification
1	-	-	-	-	-	Bolt-row outside of beam
2	25.14	-	104.88	✓	-	Bolt-row adjacent to beam flange
3	-	25.14	104.88	-	✓	Bolt-row adjacent to beam flange

4.5.4.2. Bolt rows considered individually

Row 1 - Bolt-row outside of beam:

leff circular patterns = smallest of:

$$2\pi m_x = 2*3,14*24,34 = 152,93$$

 $\pi m_x + w = 3,14*24,34 + 80 = 156,47$
 $\pi m_x + 2e = 3,14*24,34 + 2*40 = 156,47$

leff non circular patterns = smallest of:

$$4m_x + 1,25 e_x = 4*24,34 + 1,25 * 40 = 147,36$$

 $e + 2m_x + 0,625e_x = 30 + 2*24,34 + 0,625*40 = 103,68$
 $0,5 b_p = 0,5 * 140 = \textbf{70}$
 $0,5 w + 2m_x + 0,625 e_x = 0,5 *80 + 2*24,34 + 0,625*40 = 113,68$

Row 2 - Bolt-row adjacent to beam flange:

 l_{eff} circular patterns = $2\pi m = 2*3.14*33,66 = 211,49$

 l_{eff} non circular patterns: $\alpha m = 5.77 * 33.66 = 194.22$

Row 3 - Bolt-row adjacent to beam flange:

 l_{eff} circular patterns = $2\pi m = 2*3.14*33,66 = 211,49$ l_{eff} non circular patterns: $\alpha m = 5,77*33,66 = 194.22$

Row	l _{eff} circular patterns	l _{eff} non-circular patterns		
1	152,93	70,00		
2	211,49	194.22		
3	211,49	194.22		

row	leff,cp,i	leff,nc,i
1	152.95	70.00
2	211.47	194.10
3	211.47	194.10

And now from the bottom of Table 6.6:

Mode 1:	$\ell_{\text{eff},1} = \ell_{\text{eff},nc} \; \; \text{but} \; \; \ell_{\text{eff},1} \leq \ell_{\text{eff},cp}$
Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$

So this results in:

Bolt-row 1:

$$\begin{array}{lll} \mbox{Mode 1: } I_{\mbox{\scriptsize eff,1}} = I_{\mbox{\scriptsize eff,nc}} \mbox{ but } I_{\mbox{\scriptsize eff,1}} \leq I_{\mbox{\scriptsize eff,cp}} & => I_{\mbox{\scriptsize eff,1}} = 70.00 \\ \mbox{Mode 2: } I_{\mbox{\scriptsize eff,2}} = I_{\mbox{\scriptsize eff,nc}} & => I_{\mbox{\scriptsize eff,2}} = 70.00 \\ \end{array}$$

Bolt-row 2; Bolt-row 3:

Mode 1 :
$$I_{eff,1} = I_{eff,nc}$$
 but $I_{eff,1} \le I_{eff, cp}$ => $I_{eff,1} = 194.10$
Mode 2 : $I_{eff,2} = I_{eff,nc}$ => $I_{eff,2} = 194.10$

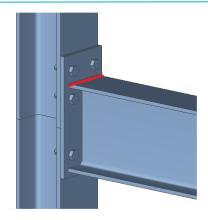
Now the same check for prying forces can be executed and the same formulas for the different mode.

Afterwards also the beam web in tension can be calculated again using the same formulas.

The manual calculation of this can be found in our calculation Steel design example of a joint with extended end plate".

This will result in the following tables for the individual bolt-rows:

Note: The Alternative method for FT,1,Rd according to EN 1993-1-8 Article 6.2.4, Table 6.2 is used.


For individual bolt-row:

row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,ep,Rd,i
1	70.00	70.00	164.77	✓	122.17	122.10	180.86	122.10
2	194.10	194.10	157.04	✓	233.51	136.83	180.86	136.83
3	194.10	194.10	157.04	√	233.51	136.83	180.86	136.83

row	beff,t,wb	Ft,wb,Rd,i
1	-	-
2	194.10	269.11
3	194.10	269.11

4.5.4.3. Bolt rows considered as part of a group

Again for the bolt rows considered as part of a group, we can follow the same principle. For the end plate, only the group 2-3 is a possible group. Between row 1 and row 2 we have the flange of the beam, which will be seen as a stiffener.

So Row 1 and Row 2 are separate.

The only group is thus Row 2-3 and leff is calculated again using Table 6.6 of the EN 1993-1-8 (Ref.[1]).

Row 2:

 $\begin{array}{l} L_{\text{eff}} \ \text{circular begin bolt-row} = \pi m + p = 3.14 * 33.66 + 140 = 245.73 \\ L_{\text{eff}} \ \text{non circular begin bolt-row} = 0.5p + \alpha m - (2m + 0.625e) = 0.5*140 + 5.77*33.66 - (2*33.66 + 140.625e) \\ \end{array}$

$$0,625*30) = 178,15$$

Row 3:

 $\begin{array}{l} \text{L}_{\text{eff}} \text{ circular end bolt-row} = \pi \text{m} + \text{p} = 3,14 * 33,66 + 140 = 245,73 \\ \text{L}_{\text{eff}} \text{ non circular end bolt-row} = 0,5\text{p} + \alpha \text{m} - (2\text{m} + 0,625\text{e}) = 0,5*140 + 5,77*33,66 - (2*33,66 + 140) + (2*33$

$$0,625*30) = 178,15$$

Summary of values:

Row	l _{eff} circular	l _{eff} non circular inner bolt-row	l _{eff} circular end bolt-row	leff non circular end bolt-row	l _{eff} circular begin bolt-row	l _{eff} non circular begin bolt-row
1	-	-	-	-	-	-
2	-	-	-	-	245,73	178,15
3	-	-	245,73	178,15	-	-

In SCIA Engineer:

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,g,start
1	-	-	-	-	-	-
2	-	-	-	-	245.73	178.03
3	-	-	245.73	178.03	-	-

Mode 1 : $\sum l_{eff,1} = \sum l_{eff,nc}$ but $\sum l_{eff,1} \leq \sum l_{eff,cp}$

Mode 2 : $\sum l_{eff,2} = \sum l_{eff,nc}$

Row 2-3:

$$\sum l_{eff,cp} = 245,73 + 245,73 = 491,46$$

$$\sum l_{eff,nc} = 178,15 + 178,15 = 356,29$$

Mode $1 = Mode 2 : I_{eff} = 356,29$

group	leff,cp,g	leff,nc,g	
2- 3	491.47	356.07	

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 356.29 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 3014.27 \; kNm$$

Prying forces may develop if L_b ≤ L_b*

 $L_b = 38,8mm$

$$L_b^* = \frac{8.8 \, m^3 \, A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \, (33.66)^3 \cdot 157}{356.29 \cdot (12)^3} \cdot 2 = 171.16 \, mm$$

(with $n_b = number of bolt rows)$

- $\Rightarrow L_b < L_b^*$
- ⇒ Prying forces may develop

Mode 1:
$$F_{T,1,Rd} = \frac{(8n-2e_W)M_{pl,1,Rd}}{2mn-e_W(m+n)} = \frac{(8\cdot30-2\cdot6,75)\cdot3014,27}{2\cdot33.66\cdot30-6.75\cdot(33.66+30)} = 429,42 \ kN$$

Mode 2:
$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot3014,27+30\cdot4\cdot90,43}{33,66+30} = 265,16 \text{ kN}$$

Mode
$$3:F_{T,3,Rd} = \sum F_{t,Rd} = 4 \cdot 90,43 = 361,7 \ kN$$

$$\Rightarrow F_{T,Rd} = 265, 12 \, kN$$

In SCIA Engineer:

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,ep,Rd,g
2- 3	356.07	356.07	171.21	✓	428.37	265.12	361.73	265.12

4.5.4.4. Beam web in tension for bolt rows considered as part of a group

Row 2-3:

$$\Rightarrow F_{T,wb,Rd} = \frac{b_{eff,t,wb}t_{wb}f_{y,wb}}{\gamma_{M0}} = 356,29 \cdot 5,9 \cdot 235 \cdot 10^{-3}/1$$

$$\Rightarrow F_{T,wc,Rd} = 493,9kN$$

In SCIA Engineer:

group	beff,t,wb	Ft,wb,Rd,g
2- 3	356.07	493.69

4.5.5. Potential tension resistance for each bolt row

In SCIA Engineer all results for the column flange and end plate are summarized in one table:

2.2. Force distribution in bolt-rows

2.2.1. Potential tension resistance

According to EN 1993-1-8 Article 6.2.7.2 (6),(8)

row	Ft,fc,Rd,i	Ft,fc,Rd,g	Ft,wc,Rd,i	Ft,wc,Rd,g	Ft,ep,Rd,i	Ft,ep,Rd,g	Ft,wb,Rd,i	Ft,wb,Rd,g	Ft,r,Rd
1	138.51	-	178.95	-	122.10	-	-	-	122.10
2	138.51	132.58	178.95	92.75	136.83	-	269.11	-	92.75
3	138.51	176.82	178.95	30.54	136.83	172.37	269.11	400.94	30.54

 Σ Ft,Rd = 245.40 kN

The minimum value of all those calculated value is the limited value for the tension resistance of one bolt row:

Row 1: 122,10 kN (End plate failure)

Row 2: 92,75 kN (Column flange failure)

Row 3: 30,54 kN (Column flange failure)

This will be used in the calculation of MRd in the next chapter.

4.6. Calculation of MRd

The design moment resistance $M_{j,Rd}$ of a beam-to-column joint with a bolted end-plate connection may be determined from:

$$M_{i,Rd} = \sum_{r} h_r F_{tr,Rd}$$
 (EN 1993-1-8; §6.2.7.2 – Ref.[1])

Ft,min for each boltrow:

Row 1: 122,10 kN (End plate failure) Row 2: 92,75 kN (Column flange failure)

Row 3: 30,54 kN (Column flange failure)

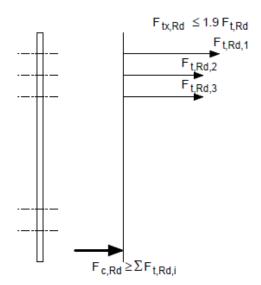
Following §6.2.7.2 (6) and (8)

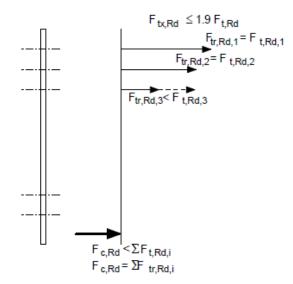
The lowest value for the column web in tension, the column flange in bending, the end-plate in bending and the beam web in tension has to be checked. All these values are higher than column web in shear, which also have to be checked following §6.2.7.2 (7).

The column web in shear has the lowest resistance: 159,72kN

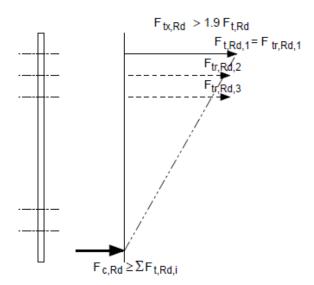
This is also shown in SCIA Engineer:

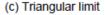
2.2.2. Assessment of the shear and compression zone

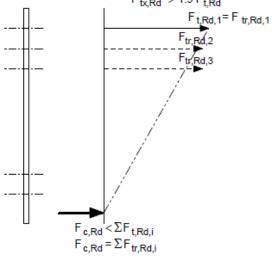

According to EN 1993-1-8 Article 6.2.7.2 (7)


Column web in shear (Vwp,Rd/Beta)	160.21	kN
Column web in compression (Fc,wc,Rd)	190.56	kN
Beam flange and web in compression (Fc,fb,Rd)	317.72	kN

Limiting resistance = 160.21 kN


This limit and the triangular limit (see further) are shown on the next page.


40 MV -2021/05/31


- (a) Plastic distribution
- Because F_{c,Rd} and V_{wp,Rd} ≥ F_{t,Rd,i} therefore the effective tension resistance (F_{t,Rd}) is equal to the potential design resistance (F_{t,Rd,i})
- (b) Modified plastic distribution
- Because F_{c,Rd} and/or V_{wp,Rd} < F_{t,Rd,i} therefore the
 effective tension resistances (F_{tr,Rd}) have to be
 reduced starting from the closest bolt to the
 compression centre:

 Because F_{tx,Rd} > 1,9 F_{t,Rd} the effective tension resistance has to be reduced:

$$F_{\text{tr,Rd}} = F_{\text{tx,Rd}} \frac{h_{\text{r}}}{h_{\text{x}}}$$

(d) Triangular limit

 Because F_{tx,Rd} > 1,9 F_{t,Rd} the effective tension resistance has to be reduced:

$$F_{\text{tr,Rd}} = F_{\text{tx,Rd}} \frac{h_{\text{r}}}{h_{\text{x}}}$$

 Because F_{c,Rd} and/or V_{wp,Rd} < F_{t,Rd,i} the effective tension resistances (F_{tr,Rd}) have to be reduced, starting from the closest bolt to the compression centre

For the first boltrow $F_{t,Rd,1} = 122,10 \text{ kN}$.

The maximum value for bolt row 2 is: $F_{t,Rd,2}$ = Limiting resistance - $F_{t,Rd,1}$ = 160,21 - 122,10 = 38,11kN.

And row 3 will not take any resistance because $F_{t,Rd,1} + F_{t,Rd,2} = Limiting resistance = 160,21 kN$

This principle is shown on the next page.

- ⇒ Row 1: 122,10 kN (End plate failure)
- ⇒ Row 2: 38,10 kN (Reduced by column web in shear)
- ⇒ Row 3: 0 kN (Reduced by column web in shear)

This is also shown in SCIA Engineer:

row	Ft,r,Rd	Decrease	Ft,r,Rd
1	122.10	0.00	122.10
2	92.75	54.65	38.10
3	30.54	30.54	0.00

Following EN 1993-1-8 $\S6.2.7.2$ (9) (Ref.[1]) the value 1,9 $F_{t,Rd}$ has to be checked also:

$$1.9 F_{t,Rd} = 1.9 * 90.43 kN = 171.82 kN$$

The formula $F_{tx,Rd} \leq 1.9F_{t,Rd}$ is fulfilled for all the rows.

So also no reduction in SCIA Engineer for the triangular limit:

2.2.3. Triangular limit

According to EN 1993-1-8 Article 6.2.7.2 (9) Limit: 1.9*Ft,Rd = 171.82 kN

row	Ft,r,Rd	> Limit	Decrease	Ft,r,Rd
1	122.10	X	-	122.10
2	38.10	X	-	38.10
2	0.00	V	_	0.00

So M_{j,Rd} can be calculated with the following values:

 $h_{row 1} = 250 - 9,2/2 = 245.4 \text{ mm}$ $h_{row 2} = 180 - 9,2/2 = 175.4 \text{ mm}$ $h_{row 3} = 40 - 9,2/2 = 35,4 \text{ mm}$

42 MV -2021/05/31

Those values are calculated as the distance from the bolt to the middle of the bottom flange. In SCIA Engineer the values are given as the distance to the bottom of the beam, so we have to subtract the half of the thickness of the flange (=9,2mm/2) of this distance.

Row	h [mm]	F _t [kN]
1	245,4	122,10
2	175,4	38,10
3	35,4	0

 $M_{i, Rd} = 245.4 * 122.10 + 175.4 * 38.10 = 36646 \text{ kNmm} = 36.64 \text{ kNm}$

In SCIA Engineer:

2.3. Determination of Mi, y, Rd

According to EN 1993-1-8 Article 6.2.7.2 (1)

row	hr[mm]	Ft,r,Rd[kN]
1	245.40	122.10
2	175.40	38.10
3	35.40	0.00

 $Mj_ry_rRd = 36.65 kNm$

4.7. Calculation of NRd

The value for N_{i,Rd} is calculated as follows:

If $N_{i,Ed}$ is a tensile force, the $N_{i,Ed}$ is determined by critical value for the following components:

- For bolted connection, as a combination for all bolt rows:
 - column web in transverse tension
 - column flange in bending
 - end plate in bending
 - beam web in tension
 - bolts in tension
- For welded connection:
 - Column web in transverse tension, where the value for t_₱ in formulas (6.10) and (6.11) is replaced by the beam height.
 - Column flange in bending, by considering the sum of formula (6.20) at the top and bottom flange of the beam.
 - If $N_{j,Ed}$ is a compressive force, the $N_{j,Rd}$ is determined by the following components:
 - Column web in transverse compression, where the value for t_b in formulas (6.16) is replaced by the beam height.
 - Column flange in bending, by considering the sum of formula (6.20) at the top and bottom flange of the beam.

In all cases, $N_{j,R} \le N_{pl,Rd}$.

In our example the normal force resistance N_{Rd} will be calculated as the minimum of the following 5 values:

Column web in tension:

This is calculated for the bolt group 1-3 for the column flange:

group	beff,t,wc	ω1	ω2	W	Ft,wc,Rd,g
1- 2	215.10	0.61	0.36	0.61	214.86
1- 3	355.10	0.42	0.23	0.42	245.40
2- 3	285.10	0.50	0.28	0.50	234.26

⇒ 245,40 kN

Beam Web in tension:

This is calculated for the bolt group 2-3 for the endplate:

group	beff,t,wb	Ft,wb,Rd,g
2- 3	356.07	493.69

⇒ 493,69 kN

Endplate in bending:

Here the most limiting value of the endplate (individual rows and groups) will be calculated.

In this case the limiting value is

- o Bolt row 1
- o Group of bolt row 2+3

For individual bolt-row:

row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,ep,Rd,i
1	70.00	70.00	164.77	✓	122.17	122.10	180.86	122.10
2	194.10	194.10	157.04	✓	233.51	136.83	180.86	136.83
3	194.10	194.10	157.04	✓	233.51	136.83	180.86	136.83

row	beff,t,wb	Ft,wb,Rd,i
1	-	-
2	194.10	269.11
3	194.10	269.11

For group of bolt-rows:

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft.en.Rd.a
2- 3	356.07	356.07	171.21	✓	428.37	265.12	361.73	265.12

And this results in: 122,10 kN + 265,12 kN = 387,22 kN

Column Flange in tension:

This is calculated for the bolt group 1-3 for the Column flange:

For group of bolt-rows:

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,fc,Rd,g
1- 2	215.10	215.10	144.71	✓	334.34	254.68	361.73	254.68
1- 3	355.10	355.10	131.48	✓	551.95	391.67	542.59	391.67
2- 3	285.10	285.10	109.18	✓	443.14	275.50	361.73	275.50

⇒ 391,67 kN

Bolts in Tension:

6 bolts and $F_{T,Rd}$ for one bolt = 90,43 kN

 \Rightarrow 6 x 90,43 kN = **542,58 kN**

$N_{j,Rd}$

- **⇒** Minimum of all previous values
- ⇒ 245.40 kN

In SCIA Engineer:

2.4. Determination of Nj,Rd

According to EN 1993-1-8 Article 6.2.7.1 (3)

data		
Column Web in tension (Ft,wc,Rd)	245.40	kN
Beam Web in tension (Ft,wb,Rd)	493.69	kN
Endplate in bending (Ft,ep,Rd)	387.22	kN
Column Flange in bending (Ft,fc,Rd)	391.67	kN

Nj,Rd = 245.40 kN

4.8. Calculation of VRd

Table 3.4 (En 1993-1-8):

$$F_{v,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}}$$

For classes 4.6, 5.6 and 8.8: $\alpha_{v} = 0.6$

 $F_{ub} = 800MPa$

A is the tensile stress area of the bolt As

$$F_{v,Rd} = \frac{\alpha_v f_{ub} A_s}{\gamma_{M2}} = \frac{0.6 \cdot 800 \cdot 157 \cdot 10^{-3}}{1.25}$$

 \Rightarrow F_{v,Rd} = 60,29 kN

Following the NOTE of §6.2.2 (2) (EN 1993-1-8):

As a simplification, bolts required to resist in tension may be assumed to provide their full design resistance in tension when it can be shown that the design shear force does not exceed the sum of

- a) The total design resistance of those bolts that are required to resist tension
- b) (0,4 / 1,4) times the total design shear resistance of those bolts that are also required to resist tension

4 bolts (row 1 and 2) are required to resist tension, 2 bolts (of row 3) are not required to resist tension.

The value 0,4/1,4 will be simplified in SCIA Engineer by the value 0,28:

$$\Rightarrow$$
 V_{Rd} = (4 * 0,4/1,4 + 2) * 60,29kN = 189,48 kN

3. Design shear resistance Vz,Rd

Vz,Rd data		
Fv,Rd	60.29	kN
nb,full	2	
nb,reduced	4	
e1,ep	40.00	mm
p1	70.00	mm
k1 plate	2.50	
k1 beam	2.50	
Alfa_b plate	0.74	
Alfa_b column	0.74	
Alfa_d plate	0.74	
Alfa_d column	0.74	
Fb,ep,Rd	102.40	kN
Fb,cf,Rd	102.40	kN
Avz	1591.08	mm ²
l1 (tension)	0.57	
l2 (compression)	0.43	
Vz,Rd beam	154.02	kN
Vz,Rd	154.02	kN

4.9. Weak axis resistances

The calculation of out-of-plane moment Mj,z,Rd resistance is based on the publications "DESIGN OF STRUCTURAL JOINTS CONNECTING H OR I SECTIONS subjected to in-plane and out-of-plane bending" by Neumann N, Nuhic F:, EUROSTEEL, 2011 and publication "Single-sided structural beam-to-column joint of H- or I-profiles with bolted endplate exposed to in-plane and out-of-plane bending" by Kristensen SO, Stavanger, 2010.

The study addresses the strong axis beam-to-column joints between H or I section members. The focus is on bolted end-plate joints, with two lines and two or more rows of bolts symmetrical about both the beam's major and its minor axis.

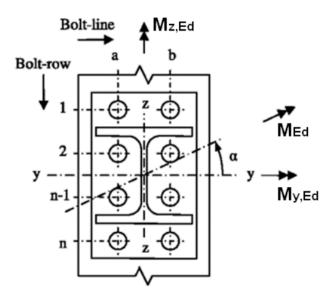
In SCIA Engineer this theory adopted when needed, will be used for all strong-axis frame bolted beam-column and splice connections with I or H sections. The method will be used only for 2 bolts / row configuration.

If needed, the complete weak-axis calculation (out-of-plane moment resistance Mj,z,Rd, shear force resistance Vy,Rd and stiffness for weak bending) may be skipped by activating "Neglect weak-axis calculation" check box in the connection setup. If so, the weak-axis calculation is not performed and a message is displayed on the output in the part dedicated to the weak-axis calculation. The check box is deactivated by default.

If the user wants to perform weak-axis calculation (the check box mentioned above is deactivated), but the connection does not fulfill the required conditions, weak-axis calculation is not performed and the user is informed about that. It is still possible to calculate shear force resistance $V_{y,Rd}$ even if the conditions are not fulfilled, but only in case design bending moment $M_{z,Ed}$ is zero.

The additional weak-axis bending unity check is displayed by the check and also linear interpolations for strong and weak-axis bending moment components are performed and unity checks calculated if weak-axis bending moment resistance M_{j,z,Rd} is calculated:

$$\frac{M_{z,Ed}}{M_{j,z,Rd}} \leq 1,0$$


$$\frac{M_{y,Ed}}{M_{j,y,Rd}} + \frac{M_{z,Ed}}{M_{j,z,Rd}} \leq 1,0$$

And if the design normal force N_{Ed} > 0,05*N_{pl,Rd} also the following check is performed:

$$\frac{M_{y,Ed}}{M_{i,y,Rd}} + \frac{M_{z,Ed}}{M_{j,z,Rd}} + \frac{N_{Ed}}{N_{j,Rd}} \le 1.0$$

4.9.1. Bending moment resistance

The connection geometry and the design bending moment may be seen on the picture below:

The strong-axis moment resistance $M_{j,y,Rd}$ of the joint is determined based on EN 1993-1-8, assuming no weak-axis bending influence. Similarly to this, it is assumed that the strong-axis moment bending will not influence calculation of weak-axis moment resistance $M_{j,z,Rd}$ of the joint.

The weak-axis moment resistance $M_{j,z,Rd}$ of the joint may be determined by:

$$M_{j,z,Rd} = F_{ta,Rd} * y$$

У

is the design distance from the bolt-line in tension to the center of compression for weak-axis bending. The leverage arm is dependent on the stiffness of the components. Within SCIA Engineer it is assumed, that joint components are infinitely stiff. The additional split is based on the type of the bolts

Case	Stiffness	;	Preload	Distance from the bolt-line		
	Column flange	Bolts		in tension to the centre of compression y		
1	Infinite	Infinite	No	$\frac{b_b + p_2}{3}$		
2	Infinite	Infinite	Yes	$\frac{b_b + 3p_2}{6}$		

With:

 b_b is the width of the beam (in case of non-symmetric beam or splice connection the minimum is used)

p₂ is the horizontal spacing between the two lines of bolts

F_{ta,Rd} is the effective design tension resistance of a bolt-line for the weak-axis moment calculation taken as:

Fta,Rd = min [Fta,fc,Rd, Fta,ep,Rd, Fcb,fb,Rd, (Fta,fct,Rd + Fta,wbc,Rd)]

With:

Fta,fc,Rd is the design tension resistance for bolt-line a of the column flange in transverse bending

F_{ta,ep,Rd} is the design tension resistance for bolt-line a of the end-plate in bending

F_{cb.fb,Rd} is the design compression resistance for bolt-line b of the beam flange in compression

 $F_{ta,fct,Rd}$ is the design tension resistance for bolt-line a of the column flange in twisting $F_{ta,wbc,Rd}$ is the design tension resistance for bolt-line a of the column web in bending

For splice connections only $F_{ta,ep,Rd}$ and $F_{cb,fb,Rd}$ component resistances are calculated for each side and minimum resistance from the four components is taken as $F_{ta,Rd}$.

In SCIA Engineer:

6.2. Determination of Mj,z,Rd

Mj,z,Rd data				
Fta,Rd	28.79	kN		
У	63.33	mm		
Mj,z,Rd	1.82	kNm		

Calculation of the weak-axis components may be seen in the following subchapters.

4.9.1.1. Column flange in bending

The component resistance $F_{ta,fc,Rd}$ for each bolt row is already calculated according to EN1993-1-8 Art. 6.2.6.4 in strong axis moment resistance $F_{t,fc,Rd}$. Since tension of weak-axis bending only concerns one side of the connected member, the final weak-axis component resistance for each bolt $F_{ta,fc,Rd}$ is calculated as $F_{t,fc,Rd}$ divided by two.

In SCIA Engineer:

...::WEAK-AXIS CALCULATION:....

- 6. Design moment resistance Mj,z,Rd
- 6.1. Design resistance of basic components
- 6.1.1. Column flange in bending

row	Ft,fc,Rd,i	Ft,fc,Rd,g	Ft,fc,Rd	Fta,fc,Rd
1	138.51	-	138.51	69.25
2	138.51	132.58	132.58	66.29
3	138.51	176.82	138.51	69.25

Fta,fc,Rd = 204.79 kN

4.9.1.2. End plate in bending

The component resistance $F_{ta,ep,Rd}$ for each bolt-row is already calculated according to EN 1993-1-8 Art.6.2.6.5 in strong-axis moment resistance calculation as resistance $F_{t,ep,Rd}$. The final bolt-row resistances for that component are shown in the appropriate columns in the table of potential tension resistances, where the individual and group approaches are accounted for.

Since tension of weak-axis bending concerns only one side of the connected member, the final weak-axis component resistance for each bolt $F_{ta,ep,Rd}$ is calculated as $F_{t,ep,Rd}$, divided by two.

Minor modification in calculation of effective length for individual approach is done for bolt-rows classified as "Bolt-row outside of beam". Compared to the strong-axis calculation, the patterns breaching the z-axis of the connected beam were removed. Weak-axis calculation formulas for the given classification may be seen below:

Bolt-row classification	Bolt-row considered individually		
	circular	non-circular	
Bolt-row outside of beam	2πmx	4mx + 1,25ex	
Boit-row dutside of beam	πmx + 2ex	e + 2mx + 0,625ex	

6.1.2. End-plate in bending

row	leff,cp,i	leff,nc,i
1	152.95	103.69

For individual bolt-row:

	row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,ep,Rd,i
Γ	1	103.69	103.69	111.24	✓	180.96	132.51	180.86	132.51

row	Ft,ep,Rd,i	Ft,ep,Rd,g	Ft,ep,Rd	Fta,ep,Rd,r
1	132.51	-	132.51	66.26
2	136.83	-	136.83	68.41
3	136.83	172.37	136.83	68.41

Fta,ep,Rd = 203.08 kN

4.9.1.3. Beam flange in compression

The design component resistance $F_{cb,fb,Rd}$ may be taken as the design compression resistance of one beam flange. Final resistance of the component is given as:

$$F_{t,fb,cp,Rd} = \frac{2f_y * b_{c,fb,eff} * t_{fb}}{\gamma_{M0}}$$

With:

fy is the yield strength of the beam the is the thickness of the beam flange

y_{M0} is the partial safety factor for resistance of cross-sections

b_{c,fb,eff} is the effective width of the component given as:

$$b_{c,fb,eff} = 0.5 * (t_{wc} + 2r_c + 7k(t_{fc} + t_{ep})) = 0.5t_{wc} + r_c + 3.5k(t_{fc} + t_{ep})$$

But is not greater than:

$$b_{c,fb,eff} = \frac{b_p}{2}$$

For splice connections, this value is only calculated as:

$$b_{c,fb,eff} = \frac{b_p}{2}$$

Where:

twc is the thickness of the column web

t_{fc} is the thickness of the column flange

t_{ep} is the thickness of the end plate

r_c is the rounding r1 of the column

b_p is the width of the beam

k is the thickness reduction coefficient given as:

$$k = \frac{t_{fc}}{t_{fb}} \text{ and } k \le 1$$

6.1.3. Beam flange in compression

Fcb,fb,Rd data				
bc,fb,eff	70.00	mm		
k	1.00			
Fcb,fb,Rd	302.68	kN		

4.9.1.4. Column flange in twisting

The design resistance of the bolt-line in tension for the column flange in twisting is taken as:

$$f_{ta,fct,Rd} = \frac{0.3 * b_c * t_{fc}^2 (\frac{f_{yc}}{\sqrt{3}})}{y * \gamma_{M0}}$$

With:

b_c is the width of the column

tfc is the thickness of the column flangefyc is the yield strength of the column

 γ_{M0} is the partial safety factor for resistance of cross-sections

y is the design distance from the bolt-line in tension to the center of compression for weak-axis

bending

In SCIA Engineer:

6.1.4. Column flange in twisting

Fta,fct,Rd data				
bc	140.00	mm		
У	63.33	mm		
Fta,fct,Rd	12.96	kN		

4.9.1.5. Column web in bending

For determination of the design resistance of the bolt-line in tension for the column web in bending $F_{ta,wbc,Rd}$ the effective length of the web in bending $b_{eff,wbc}$ is proposed to be calculated assuming a maximum spread of 60° from the other bolts.

$$F_{ta,wbc,Rd} = \frac{0.25*b_{eff,wbc}*t_{wc}^2*f_{yc}}{y*\gamma_{M0}}$$

With:

twc is the web thickness of the column web

 $b_{\text{eff},\text{wbc}}\quad \text{is the effective length of the web in bending given as:} \quad$

 $b_{eff,wbc} = \sum p_1 + 1,73 * p_2$

With:

 $\sum p_1$ is the vertical spacing between the first and last bolt-row is the horizontal spacing between the two bolt-lines

6.1.5. Column web in bending

Fta,wbc,Rd data				
p1	210.00	mm		
p2	80.00	mm		
у	63.33	mm		
beff,wbc	348.40	mm		
Fta,wbc,Rd	15.84	kN		

4.9.2. Shear force resistance

The shear resistance calculation is similar to the strong-axis shear resistance calculation, however several modifications are needed in calculation of:

• The design shear force resistance of a joint V_{y,Rd} for normal bolt:

For weak-axis shear force resistance $V_{y,Rd}$ the number of bolts n_t , which are also required to resist tension, and number of bolts n_n , not required to resist tension, is set to half of the total number of all bolts each. The above applies to the case when a design bending moment $M_{z,Ed}$ is present. If the design bending moment $M_{z,Ed}$ is zero, the number of bolts n_t is set to zero and number of bolts n_n is set to number of all bolts.

• The design bearing resistance of a joint Fb,Rd

The endplate $F_{b,ep,Rd}$ and column flange $F_{b,cf,Rd}$ component resistances are re-used. No resistance recalculation is done for weak-axis.

• The reduction of shear force resistance V_{pl},Rd of the connected beam:

The shear force resistance V_{y,Rd} of a beam the formula given by EN 1993-1-1 Article 6.2.6 (2) is used, but the final resistance is multiplied by coefficient 0,5.

The additional weak-axis shear unity check is displayed by the check and also linear interpolations for strong and weak-axis shear force components is performed and unity checks calculated if weak-axis shear force resistance $V_{v,Rd}$ is calculated:

$$\frac{V_{y,Ed}}{V_{y,Rd}} \leq 1,0$$

$$\frac{V_{z,Ed}}{V_{z,Rd}} + \frac{V_{y,Ed}}{V_{y,Rd}} \leq 1,0$$

In SCIA Engineer:

7. Design shear resistance Vy,Rd

Vy,Rd data		
Fv,Rd	60.29	kN
nb,full	3	
nb,reduced	3	
Fb,ep,Rd	102.40	kN
Fb,cf,Rd	102.40	kN
Avy	2129.61	mm ²
Vy,Rd beam	144.47	kN
Vy,Rd	144.47	kN

Note: Bolt shear resistances are taken from the strong-axis calculation.

4.10. Unity checks

4.10.1. Influence of the normal force

If the axial force Ne_d in the connected beam exceeds 5% of the design resistance, $N_{pl,Rd}$, the following unity check is added :

$$\frac{M_{_{j,\text{Ed}}}}{M_{_{j,\text{Rd}}}} + \frac{N_{_{j,\text{Ed}}}}{N_{_{j,\text{Rd}}}} \leq 1.0$$

Mj.Rd is the design moment resistance of the joint, assuming no axial force

N_{j.Rd} is the axial design resistance of the joint, assuming no applied moment

 $N_{\text{\tiny J,Ed}} is$ the actual normal force in the connection

M_{j,Ed} is the actual bending moment in connection

4.10.2. General unity checks

Assume following internal forces in this connection:

$$\begin{split} N_{Ed} &= 0 \ kN \\ V_{z,Ed} &= 10 \ kN \\ M_{y,Ed} &= 10 \ kNm \end{split}$$

Check M: $M/M_{Rd} = 10/36,65 = 0,27 < 1 => ok!$

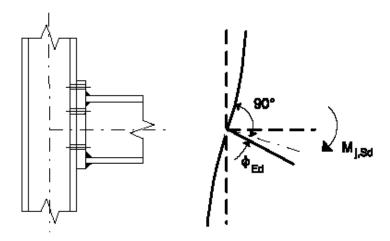
Check N: $N/N_{Rd} = 0/245, 40 = 0 < 1$ => ok!

Check V: $V/V_{Rd} = 10/154,02 = 0,06 < 1 = > ok!$

In SCIA Engineer:

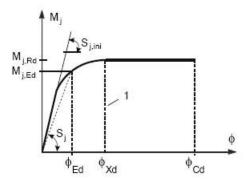
...::RESULTS::...

Unity checks


My,Ed/Mj,y,Rd	0.27
Mz,Ed/Mj,z,Rd	0.00
NEd/Nj,Rd	0.00
Vz,Ed/Vz,Rd	0.06
Vy,Ed/Vy,Rd	0.00
Vz,Ed/Vz,Rd + Vy,Ed/Vy,Rd	0.06
My,Ed/Mj,y,Rd + Mz,Ed/Mj,z,Rd	0.27

52 MV -2021/05/31

5. Stiffness of the connection


5.1. The Moment-Rotation characteristic

A joint is defined by the moment rotation characteristic that describes the relationship between the bending moment $M_{j,Sd}$ applied to a joint by the connected beam and the corresponding rotation ϕ_{Ed} between the connected members.

This moment-rotation characteristic defines three main properties:

- the moment resistance M_{j,Rd}
- the rotational stiffness S_i
- the rotation capacity ϕ_{Cd}

5.2. Calculation of the stiffness

5.2.1. General formulas

In EN 1993-1-8 Table 6.11 (Ref. [1]) the stiffness coefficients for basic joint components are given:

Coefficient	Basic component	Formula	
k ₁	column web panel in shear	Unstiffened: $k_1 = \frac{0.38 \cdot A_{VC}}{\beta z}$	Stiffened: $k_1 = \infty$
k ₂	column web in compression	Unstiffened: $k_2 = \frac{0.7 \cdot b_{eff,c,wc} t_{wc}}{d_c}$	Stiffened: $k_2 = \infty$

k ₃	Column web in tension	Unstiffened:	Stiffened:		
		$k_3 = \frac{0.7 \cdot b_{eff,t,wc} t_{wc}}{d_c}$	$k_3 = \infty$		
k 4	column flange in bending (for a single bolt-row in tension)	$k_4 = \frac{0.9 \cdot l_{eff} t_{fc}^3}{m^3}$			
k ₅	End-plate in bending (for a single bolt-row in tension)	$k_5 = \frac{0.9 \cdot l_{eff} t_p^3}{m^3}$			
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$			
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$			
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$			
k ₁₀	Bolts in tension (for a single bolt-row)	$k_{10} = 1.6 A_s / L_b$			
k ₁₁ (or k ₁₇)	Bolts in shear	$k_{11}(or \ k_{17}) = \frac{16 \cdot n_b \cdot d^2 \cdot f_{ub}}{E \cdot d_{M16}}$			
k ₁₂ (or k ₁₈)	Bolts in bearing (for each component <i>j</i> on which the bolts bear)	$k_{12}(or \ k_{18}) = \frac{24 \cdot n_b \cdot k_b \cdot k_t}{E}$	$\cdot d \cdot f_{ub}$		
k ₁₃	Concrete in compression (including grout)	$k_{13} = \frac{E_c \sqrt{b_{eff} l_{eff}}}{1,275 E}$			
k ₁₄	Plate in bending under compression	$k_{14} = \infty$			
k ₁₅	Base plate in bending under tension (for a single bolt row in tension)	With prying forces $k_{15} = \frac{0.85 \cdot l_{eff} t_p^3}{m^3}$ Without prying forces $k_{15} = \frac{0.425 \cdot l_{eff} t_p^3}{m^3}$			
k ₁₆	Flange cleat in bending	With prying forces $k_{16} = 1.6 A_s/L_b$	Without prying forces $k_{16} = 2.0 A_s/L_b$		

with	A_{vc}	the shear area of the column
	Z	the lever arm
	β	the transformation parameter
	b _{eff}	the effective width of the column web
	d _c	the clear depth of the column web
	leff	the smallest effective length for the bolt
	m	the distance bolt to beam/column web
	As	the tensile stress area of the bolt
	L_b	the elongation length of the bolt

5.2.2. Calculation of the stiffness in detail

In Table 6.10 of the EN 1993-1-8 (Ref.[1]) the stiffness coefficients which has to be taken into account, are given.

Table 6.10: Joints with bolted end-plate connections and base plate connections

Beam-to-column joint with bolted end-plate connections	Number of bolt-rows in tension	Stiffness coefficients k _l to be taken into account	
Single-sided	One	k ₁ ; k ₂ ; k ₃ ; k ₄ ; k ₅ ; k ₁₀	
Single-sided	Two or more	$k_1; k_2; k_{eq}$	
Double sided - Mamonta causal and apprecite	One	k ₂ ; k ₃ ; k ₄ ; k ₅ ; k ₁₀	
Double sided – Moments equal and opposite	Two or more	k_2 ; k_{eq}	
Double sided – Moments unequal	One	k ₁ ; k ₂ ; k ₃ ; k ₄ ; k ₅ ; k ₁₀	
Double sided – Moments dilequal	Two or more	$k_1; k_2; k_{eq}$	
Beam splice with bolted end-plates	Number of bolt-rows in tension	Stiffness coefficients k_i to be taken into account	
Double sided. Memorts amaland amagista	One	k_5 [left]; k_5 [right]; k_{10}	
Double sided - Moments equal and opposite	Two or more	k _{eq}	
Base plate connections	Number of bolt-rows in tension	Stiffness coefficients k_l to be taken into account	
-	One	k ₁₃ ; k ₁₅ ; k ₁₆	
Base plate connections	Two or more	k_{13} ; k_{15} and k_{16} for each bolt row	

For this connection (Single – sided), k_1 , k_2 , k_3 , k_4 and k_{10} has to be calculated, using the formulas of Table 6.11 of EN 1993-1-8.

5.2.2.1. Column web in tension: k₃

$$k_3 = \frac{0.7 \; b_{eff,t,wc} \; t_{wc}}{d_c}$$

⇒ b_{eff,t,wc} is the effective width of the column web in tension from 6.2.6.3. For a joint with a single bolt-row in tension, b_{eff,t,wc} should be taken as equal to the smallest of the effective lengths l_{eff} given for this bolt-row in Table 6.4 or Table 6.5.

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,q,start
1	-	-	-	-	154.51	107.55
2	210.00	105.00	154.51	107.55	224.51	142.55
3	-	-	224.51	142.55	-	-

 $\Rightarrow b_{eff,t,wc,row1} = 107,55$

 $\Rightarrow b_{eff,t,wc,row2} = 105$

 \Rightarrow $b_{eff,t,wc,row3} = 142,55$

$$k_{3,row1} = \frac{0.7 \cdot 107,55 \cdot 7}{92} =$$
5,73 mm

$$k_{3,row2} = \frac{0.7 \cdot 105 \cdot 7}{92} =$$
5,59 mm

$$k_{3,row2} = \frac{0.7 \cdot 142,55 \cdot 7}{92} =$$
7,59 mm

4.1. Design rotational stiffness

According to EN 1993-1-8 Article 6.3

row	k3[mm]	k4[mm]	k5[mm]	k10[mm]	keff[mm]
1	5.73	8.59	7.55	6.47	1.73
2	5.59	8.39	7.26	6.47	1.69
3	7.59	11.39	7.26	6.47	1.95

5.2.2.2. Column flange in bending: k4

$$k_4 = \frac{0.9 \; l_{eff} t_p^3}{m^3}$$

⇒ leff is the smallest of the effective lengths given for this bolt-row given in Table 6.4 or Table 6.5.

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,q,start
1	-	-	-	-	154.51	107.55
2	210.00	105.00	154.51	107.55	224.51	142.55
3	-	-	224.51	142.55	-	-

$$\Rightarrow l_{eff,t,wc,row1} = 107,55$$

$$\Rightarrow l_{eff,t,wc,row2} = 105$$

$$\Rightarrow l_{eff,t,wc,row3} = 142,55$$

$$k_{4,row1} = \frac{0.9 \cdot 107,55 \cdot 12^3}{26,9^3}$$
 = 8,59 mm

$$k_{4,row2} = \frac{0.9 \cdot 105 \cdot 12^3}{26.9^3}$$
 = 8,39 mm

$$k_{4,row3} = \frac{0.9 \cdot 142,55 \cdot 12^3}{26,9^3} =$$
 11,39 mm

In SCIA Engineer:

4.1. Design rotational stiffness

According to EN 1993-1-8 Article 6.3

row	k3[mm]	k4[mm]	κ5[mm]	k10[mm]	keff[mm]
1	5.73	8.59	7.55	6.47	1.73
2	5.59	8.39	7.26	6.47	1.69
3	7.59	11.39	7.26	6.47	1.95

5.2.2.3. End-plate in bending: k₅

$$k_5 = \frac{0.9 \; l_{eff} t_p^3}{m^3}$$

 \Rightarrow left is the smallest of the effective lengths given for this bolt-row given in Table 6.6.

row	p (p1+p2)	е	ex	m	mx	n	λ1U	λ2U	αU	λ1L	λ2L	aL
1	0.00+0.00	30.00	40.00	-	24.34	30.00	-	-	-	-	-	-
2	0.00+70.00	30.00	-	33.66	-	30.00	0.53	0.39	5.77	-	-	-
3	70.00+0.00	30.00	-	33.66	-	30.00	-	-	-	0.53	0.39	5.77

row	leff,cp,i	leff,nc,i
1	152.95	70.00
2	211.47	194.10
3	211.47	194.10

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,g,start
1	-	-	-	-	-	-
2	-	-	-	-	245.73	178.03
3	-	-	245.73	178.03	-	-

 \Rightarrow l_{eff, row1} = 70

 \Rightarrow I_{eff, row2} = 178,03

⇒ l_{eff, row3} = 178,03

$$k_{5,row \ 1} = \frac{0.9 \cdot 70 \cdot 12^3}{(24,34)^3}$$
 = 7,55 mm

$$k_{5,row\ 2} = \frac{0.9 \cdot 178,09 \cdot 12^3}{(33,66)^3}$$
 = 7,26 mm

$$k_{5,row 3} = \frac{0.9 \cdot 178,09 \cdot 12^3}{(33,66)^3} = 7,26 \text{ mm}$$

In SCIA Engineer:

4.1. Design rotational stiffness

According to EN 1993-1-8 Article 6.3

row	k3[mm]	k4[mm]	k5[mm]	k10[mm]	keff[mm]
1	5.73	8.59	7.55	6.47	1.73
2	5.59	8.39	7.26	6.47	1.69
3	7.59	11.39	7.26	6.47	1.95

5.2.2.4. Bolts in tension: k₁₀

$$k_{10} = 1.6 \frac{A_s}{L_b}$$

- \Rightarrow A is the tensile stress area of the bolt A_s = 157mm²
- ⇒ L_b is the bolt elongation length, taken as equal to the grip length (total thickness of material and washers), plus half the sum of the height of the bolt head and the height of the nut.

$$\Rightarrow L_b = t_f + t_p + t_{washer} + (h_{bolt_head} + h_{nut})/2$$

$$= 12 + 12 + 3,3 + (10 + 13)/2$$

$$= 38,8mm$$

$$k_{10} = 1, 6 \cdot \frac{157}{38.8} = 6,47 \text{ mm}$$

In SCIA Engineer:

4.1. Design rotational stiffness

According to EN 1993-1-8 Article 6.3

row	k3[mm]	k4[mm]	k5[mm]	k10[mm]	keff[mm]
1	5.73	8.59	7.55	6.47	1.73
2	5.59	8.39	7.26	6.47	1.69
3	7.59	11.39	7.26	6.47	1.95

5.2.2.5. **Equivalent stiffness**

The effective stiffness keff,r for bolt-row r should be determined from

$$k_{eff,r} = 1/\sum_{i} (\frac{1}{k_{i,r}})$$
 (see also formula (6.30) of EN 1993-1-8 – Ref.[1])

In the case of a beam-to-column joint with an end-plate connection, keq should be based upon (and replace) the stiffness coefficients k_i fork₃, k₄, k₅ and k₁₀.

-
$$k_{\text{eff,row1}} = \frac{1}{\frac{1}{5,73} + \frac{1}{8,59} + \frac{1}{7,55} + \frac{1}{6,47}} = 1,73$$

-
$$k_{\text{eff,row2}} = \frac{1}{\frac{1}{5,59} + \frac{1}{8,39} + \frac{1}{7,26} + \frac{1}{6,47}} = 1,69$$

- $k_{\text{eff,row3}} = \frac{1}{\frac{1}{7,59} + \frac{1}{11.39} + \frac{1}{7,26} + \frac{1}{6,47}} = 1,95$

$$-k_{\text{eff,row3}} = \frac{1}{\frac{1}{7,59} + \frac{1}{11,39} + \frac{1}{7,26} + \frac{1}{6,47}} = 1,95$$

4.1. Design rotational stiffness

According to EN 1993-1-8 Article 6.3

row	k3[mm]	k4[mm]	k5[mm]	k10[mm]	keff[mm]
1	5.73	8.59	7.55	6.47	1.73
2	5.59	8.39	7.26	6.47	1.69
3	7.59	11.39	7.26	6.47	1.95

The equivalent lever arm zeq should be determined from:

$$z_{eq} = \frac{\sum_{r} k_{eff,r} h_{r}^{2}}{\sum_{r} k_{eff,r} h_{r}} = \frac{k_{eff,row1} h_{row1}^{2} + k_{eff,row2} h_{row2}^{2} + k_{eff,row3} h_{row3}^{2}}{k_{eff,row1} h_{row1} + k_{eff,row2} h_{row2} + k_{eff,row3} h_{row3}}$$

$$=\frac{1,73\cdot(245,4)^2+1,69\cdot(175,4)^2+1,95\cdot(35,4)^2}{1,73\cdot245,4+1,69\cdot175,4+1,95\cdot35,4}$$

$$z_{eq} = \frac{158619,4}{790} = 200,73 \ mm$$

The equivalent stiffness keq can now be determined from:

$$k_{eq} = \frac{\sum_{r}(k_{eff,r}h_r)}{z_{eq}}$$
 (see also formula (6.29) from En 1993-1-8 (Ref.[1]))

$$k_{eq} = \frac{1,73 \cdot 245,4 + 1,69 \cdot 175,4 + 1,95 \cdot 35,4}{200,79} = 3,94 \ mm$$

And those values are also given in SCIA Engineer:

Sj data				
Sj	10.97	MNm/rad		
Si.ini	10.97	MNm/rad		
Z	200.73	mm		
mu	1.00			
k1	2.48	mm		
k2	8.70	mm		
keq	3.94	mm		

5.2.2.6. Column web panel in shear: k₁

$$k_1 = \frac{0.38\,A_{vc}}{\beta\;z}$$

z is the lever arm from Figure 6.15

Following option e) A more accurate value may be determined by taking the lever arm z as equal to zeq obtained using the method given in 6.3.3.1.

$$\Rightarrow$$
 z = z_{eq} = 200,73 mm

 β is the transformation parameter from 5.3 (7)

$$\Rightarrow$$
 $\beta = 1$

$$k_1 = \frac{0,38 \cdot 1312}{1 \cdot 200,79} = 2,48 \text{ mm}$$

Sj data				
Sj	10.97	MNm/rad		
Sj,ini	10.97	MNm/rad		
Z	200.73	mm		
mu	1.00			
k1	2.48	mm		
k2	8.70	mm		
keq	3.94	mm		

5.2.2.7. Column web in compression: k₂

$$k_{2} = \frac{0.7 \ b_{eff,c,wc} \ t_{wc}}{d_{c}}$$

$$\Rightarrow \ d = h_{c} - 2 \ (t_{f} + r_{c}) = 140 - 2 \ (12 + 12) = 92 \ mm$$

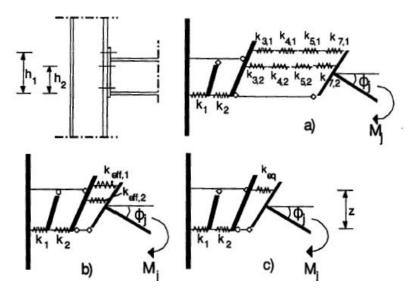
$$\Rightarrow \ b_{eff} = t_{fb} + 2\sqrt{2}a_{p} + 5(t_{fc} + s) + s_{p}$$

$$s_{p} = 12 + (15 - \sqrt{2} \cdot 5) = 19.93$$

Above the bottom flange, there is sufficient room to allow 45° dispersion

Below the bottom flange, there is NOT sufficient room. Thus the dispersion is limited.

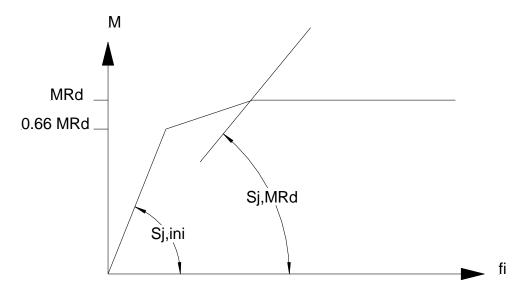
$$\Rightarrow \quad b_{eff} = 9.2 + 2\sqrt{2} \cdot 5 + 5(12 + 12) + 19.93 = 163.27mm$$


$$k_2 = \frac{0.7 \cdot 163, 3 \cdot 7}{92} = 8,70 \text{ mm}$$

In SCIA Engineer:

Sj data				
Sj	10.97	MNm/rad		
Sj,ini	10.97	MNm/rad		
Z	200.73	mm		
mu	1.00			
k1	2.48	mm		
k2	8.70	mm		
kea	13.94	mm		

5.2.2.8. Design rotational stiffness


When all different stiffness of all components are known, we can assembly this to one stiffness for the joint.

The program will calculate 3 stiffnesses:

Sj,ini	the initial rotational stiffness	
Sj	the rotational stiffness, related to the actual moment M _{j,Sd}	
Sj,MRd	the rotational stiffness, related to Mj,Rd	
	(without the influence of the normal force)	

The moment-rotation diagram is based on the values of Sj,ini and Sj,MRd.

$$S_j = \frac{E z^2}{\mu \sum_i \frac{1}{k_i}} = \frac{E z^2}{\mu \cdot (\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_{eq}})}$$

 \Rightarrow z = 200,73 mm

 \Rightarrow μ is the stiffness ration $S_{j, ini}$ / S_{j}

 $\bigcirc \quad \text{If } M_{j,\text{Ed}} \leq M_{j,\text{Rd}} \implies \mu = 1$

 $\hspace{1cm} \circ \hspace{1cm} \text{If 2/3 M}_{j,\text{Rd}} < M_{j,\text{Ed}} \leq M_{j,\text{Rd}} => \mu = \left(1,5 \text{ M}_{j,\text{Ed}} \, / \, M_{j,\,\text{Rd}}\right) \, ^{\psi} \\$

 $M_{j,\text{Ed}} = 10 \ kNm$

 $M_{j,Rd} = 36,65 \text{ kNm} \Rightarrow 2/3 M_{j,Rd} = 24,43 \text{ kNm}$

$$\Rightarrow \quad \mu = 1$$

$$\Rightarrow \quad S_j = \frac{E z^2}{\mu \sum_i \frac{1}{k_i}}$$

$$S_j = \frac{210000 \cdot (200,79)^2}{1 \cdot (\frac{1}{2,48} + \frac{1}{8,70} + \frac{1}{3,94})} \cdot 10^{-6}$$
 = 10966 kNm/rad

	Sj data				
I	Sj	10.97	MNm/rad		
	Sj,ini	10.97	MNm/rad		
	Z	200.73	mm		
	mu	1.00			
	k1	2.48	mm		
	k2	8.70	mm		
	keg	3.94	mm		

5.3. The classification on stiffness

The joint is classified as rigid, pinned or semi-rigid according to its stiffness by using the initial rotational stiffness Sj,ini and comparing this with classification boundaries given in EN 1993-1-8 (Ref. [1]).

If Sj,ini >= Sj,rigid, the joint is rigid.

If Sj,ini <= Sj,pinned, the joint is classified as pinned.

If Sj,ini<Sj,rigid and Sj,ini>Sj,pinned, the joint is classified as semi-rigid.

For braced frames:

Sj, rigid =
$$8 \frac{EI_b}{L_b}$$

Sj, pinned =
$$0.5 \frac{EI_b}{L_b}$$

For unbraced frames:

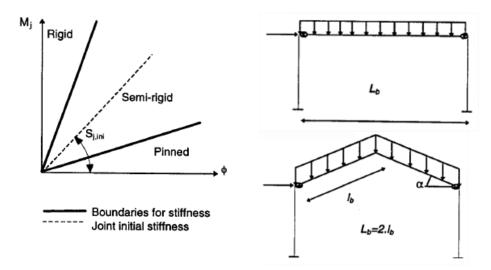
Sj, rigid =
$$25 \frac{EI_b}{L_b}$$

Sj, pinned =
$$0.5 \frac{EI_b}{L_b}$$

For column base joints:

Sj, rigid =
$$15\frac{EI_c}{L_c}$$

Sj, pinned =
$$0.5 \frac{EI_c}{L_c}$$


with I_b the second moment of area of the beam

L_b the span of the beam

lc the second moment of area of the column

Lc the storey height of the column

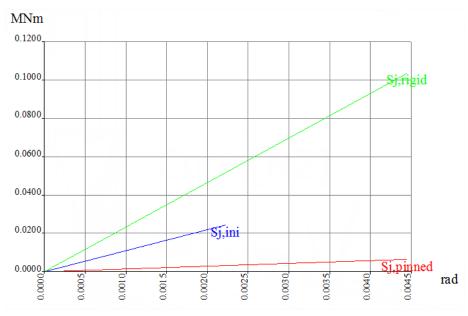
E the Young modulus

In our example we have chosen for a braced frame.

SCIA Engineer will take the length of the beam in SCIA Engineer as the length for L_b . But you can change this value manually:

$$S_{j,rigid} = 8 \frac{E \cdot I_b}{L_b} = 8 \frac{(210000 \frac{N}{mm^2}) \cdot (2,772 \cdot 10^7 \ mm^4)}{2000 \ mm} = 23,28 \ \text{MNm/rad}$$

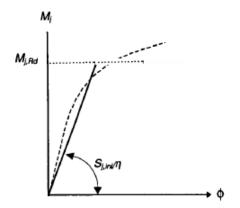
$$S_{j,pinned} = 0.5 \frac{E \cdot I_b}{L_b} = 0.5 \frac{(210000 \frac{N}{mm^2}) \cdot (2,772 \cdot 10^7 \ mm^4)}{2000 \ mm} = 1,46 \ \text{MNm/rad}$$


62 MV -2021/05/31

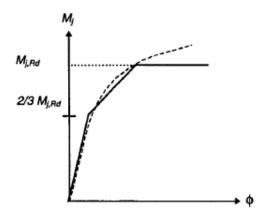
4.2. Stiffness classification

Stiffness data				
E	210000.00	N/mm ²		
Ib	27720000.00	mm ⁴		
Lb	2000.00	mm		
frame type	braced			
Sj,rigid	23.28	MNm/rad		
Sj,pinned	1.46	MNm/rad		

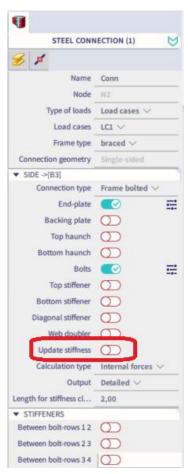
System SEMI RIGID


And this is also given in SCIA Engineer in a picture:

5.4. Transferring the joint stiffness to the analysis model

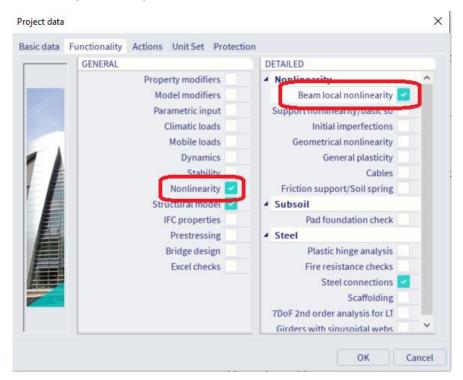

When requested, the actual stiffness of the joint can be transferred to the analysis model. The linear spring value for <**fi** y> (in the hinge dialog) is taken as Sj,ini divided by the stiffness modification coefficient η .

For asymmetric joint s which are loaded in both directions (i.e. tension on top and tension in bottom), the linear spring value for $<\mathbf{fi}\ \mathbf{y}>$ (in the hinge dialog) is taken as the smallest Sj,ini (from both directions) divided by the stiffness modification coefficient η :

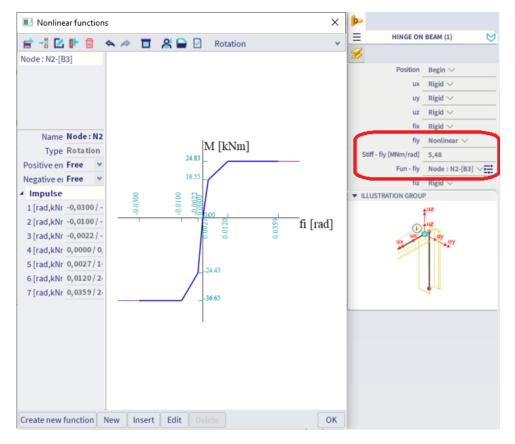


bolted beam-to-column	2
welded beam-to-column	2
welded plate-to-plate	3
column base	3

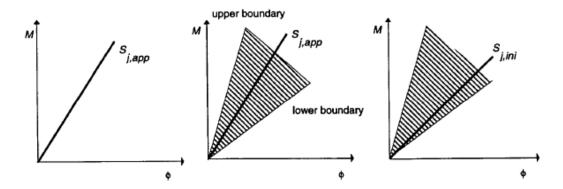
At the same time, a non-linear function is generated, representing the moment-rotation diagram.


You can add this stiffness to the connection by activating the option "Update Stiffness":

After recalculating the project, a hinge will be added to this connection with this stiffness $S_{j,\,ini\,/\eta}$.



If you want to take into account the non linear stiffness of the connection, you have to activate the following functionality in the Project Data menu:


And after the calculation, you can select the input hinge and choose here for a non linear stiffness.

The stiffness function will be registered automatically for each node in SCIA Engineer. So you only have to choose the corresponding node for each connection.

5.5. The required stiffness

The actual stiffness of the joints is compared with the required stiffness, based on the approximate joint stiffness used in the analysis model. A lower boundary and an upper boundary define the required stiffness.

When a linear spring is used in the analysis model, we check the following:

When Sj,ini >= Sj,low and Sj,ini<=Sj,upper, the actual joint stiffness is conform with the applied Sj,app in the analysis model.

When a non-linear function is used during the analysis model, we check the following:

When Sj >= Sj,low and Sj<=Sj,upper, the actual joint stiffness is conform with the applied Sj,app in the analysis model.

The boundaries are calculated with the following formulas:

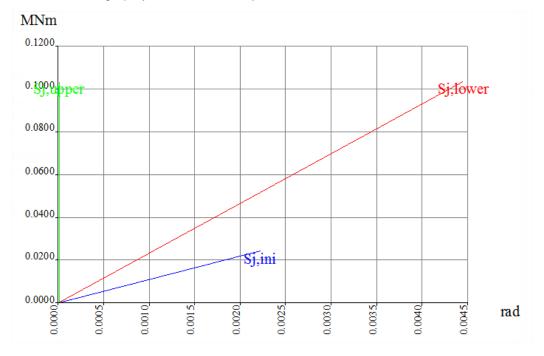
Frame	Lower boundary Sj,low		Upper boundary Sj,upper
Braced	$\frac{8 \cdot Sj, app \cdot E \cdot I_b}{10 \cdot E \cdot I_b + Sj, app \cdot L_b}$	$Sj, app \le \frac{8 \cdot E \cdot I_b}{L_b}$	$\frac{10 \cdot Sj, app \cdot E \cdot I_b}{8 \cdot E \cdot I_b - Sj, app \cdot L_b}$
		$Sj, app > \frac{8 \cdot E \cdot I_b}{L_b}$	8
Unbraced	$\frac{24 \cdot Sj, app \cdot E \cdot I_b}{30 \cdot E \cdot I_b + Sj, app \cdot L_b}$	$Sj, app \le \frac{24 \cdot E \cdot I_b}{L_b}$	$\frac{30 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{b}}}{24 \cdot \text{E} \cdot \text{I}_{\text{b}} - \text{Sj}, \text{app} \cdot \text{L}_{\text{b}}}$
		$Sj, app > \frac{24 \cdot E \cdot I_b}{L_b}$	∞

And for a column base connection:

Lower boundary		Upper boundary	
$\frac{16 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{c}}}{20 \cdot \text{E} \cdot \text{I}_{\text{c}} + \text{Sj}, \text{app} \cdot \text{L}_{\text{c}}}$	$Sj, app \le \frac{16 \cdot E \cdot I_c}{L_c}$	$\frac{20 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{c}}}{16 \cdot \text{E} \cdot \text{I}_{\text{c}} - \text{Sj}, \text{app} \cdot \text{L}_{\text{c}}}$	
	$Sj, app > \frac{16 \cdot E \cdot I_c}{L_c}$	∞	

with	I_b	the second moment of area of the beam
	L_b	the span of the beam
	Ic	the second moment of area of the column
	Lc	the storey height of the column
	E	the Young modulus
	Sj,app	the approximate joint stiffness
	Sj,ini	the actual initial joint stiffness
	Sj,low	the lower boundary stiffness
	Sj,upper	the upper boundary stiffness
	Sį	the actual joint stiffness

In this case we have a braced system and we did not take into account any stiffness, so the upper boundary equals infinity and the lower boundary is the boundary for a rigid connection:


4.3. Stiffness check

Stiffness data				
Fi y	infinity	MNm/rad		
Stiffness modification coef.	2.00			
Sj,app	infinity	MNm/rad		
Sj,lower boundary	23.28	MNm/rad		
Sj,upper boundary	infinity	MNm/rad		

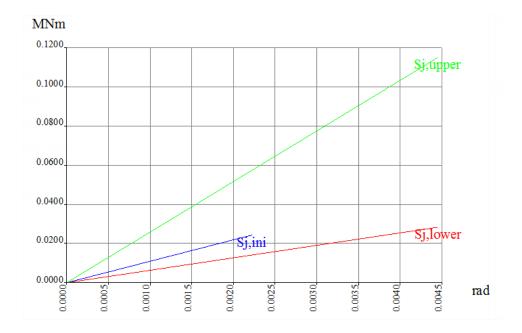
Sj,ini is not inside the boundaries.

The actual joint stiffness does not conform with the joint stiffness of the analysis model.

And also in the graph you can see that Sj,ini is not between the boundaries:

When activating the option "Update stiffness" and recalculating the project, the value for Sj,app equals Sj,ini. The stiffness taken into account in the calculation equals Sj,ini/2 because η = 2 for a beam-column connection.

In SCIA Engineer we have:


Fi y	The stiffness taken into account in the calculation, thus: Sj,ini/ η = Sj,ini/ 2 = 10,95 MNm/rad /2 = 5,475 MNm/rad
Stiffness modification coef.	Factor η and η = 2 for a beam-column connection
Sj,app	In this case Sj,ini = 10,97 MNm
Sj,lower boundary	For a braced system: $ = \frac{8 \cdot S_{j,app} \cdot E \cdot I_b}{10 \cdot E \cdot I_b + S_{j,app} \cdot L_b} $ $ = \frac{8 \cdot \frac{10,95MNm}{rad} \cdot 210000MPa \cdot 2,77E - 05 m^4}{10 \cdot 210000MPa \cdot 2,77E - 05 m^4 + 10,95MNm/rad \cdot 2m} $
	= 6,37 MNm/rad
Sj,upper boundary	For a braced system: First we have to check if Sj,app is bigger or smaller than $\frac{8 \cdot E \cdot I_b}{L_b} = \frac{8 \cdot 210000 \ MPa \cdot 2,77E - 05 \ m^4}{2m} = 23,3 \ MPa$ Thus $S_{j,app} = 10,95 \leq \frac{8 \cdot E \cdot I_b}{L_b}$ And now the upper boundary can be calculated with the following formula: $= \frac{10 \cdot S_{j,app} \cdot E \cdot I_b}{8 \cdot E \cdot I_b - S_{j,app} \cdot L_b}$ $= \frac{10 \cdot \frac{10,95MNm}{rad} \cdot 210000MPa \cdot 2,77E - 05 \ m^4}{(8 \cdot 210000MPa \cdot 2,77E - 05) - (10,95MNm/rad \cdot 2m)}$
	= 25,92 MNm/rad

4.3. Stiffness check

Stiffness data				
Fi y	5.48	MNm/rad		
Stiffness modification coef.	2.00			
Sj,app	10.97	MNm/rad		
Sj,lower boundary	6.37	MNm/rad		
Si,upper boundary	25.92	MNm/rad		

Sj,ini is inside the boundaries. The actual joint stiffness conforms with the joint stiffness of the analysis model.

And now Sj,ini will be in between the two boundaries on the graph also:

6. Calculation of welds

6.1. Calculation of a

Within Scia Engineer there is a possibility to choose from three methods for determination of the flange weld sizes by modifying the **Weld size determination** parameter in the connection setup.

Minimum for full strength

The default calculation of flange weld size is based on the Ref. [35] - ECCS N° 126. The final formula is derived as:

$$a \ge \frac{f_y \cdot \beta_w \cdot \gamma_{M2} \cdot t}{\sqrt{2} \cdot f_u \cdot \gamma_{M0}}$$

with:

fy - the yield strength of the weaker part

fu-the ultimate tensile strength of the weaker part

 β w - the correlation factor

Yмо - the partial safety factor for material

Y_{M2} - the partial safety factor for welds

t - the thickness of the beam flange

$$a \ge \frac{235 \cdot 0.8 \cdot 1.25 \cdot 9.2}{\sqrt{2} \cdot 360 \cdot 1.00} = 4.25mm$$

In SCIA Engineer:

5.1. Flange welds

data				
Mj,y,Rd	36.65	kNm		
а	1.40			
h	210.80	mm		
FRd	243.39	kN		
Nt,Rd	237.82	kN		
fu	360.00	N/mm ²		
β_{W}	0.80			
minimum af	4.25	mm		
af	5.00	mm		

Calculated from connection resistance

The weld size a_f is designed according to the resistance of the joint. The design force in the beam flange can be estimated as:

$$\gamma \cdot F_{Rd} = \frac{M_{Rd} \cdot \gamma}{h} = \frac{35,75 \cdot 1,4}{0,220 - 0,0092} = \frac{50,05}{0,2108} = 237kN$$

With: F_{Rd} The design force in the beam flange

M_{Rd} The design moment resistance of the connection

H The lever arm of the connection

The value of the factor γ is:

 γ = 1.7 for unbraced frames

 γ = 1.4 for braced frames

However, in no case shall the weld design resistance be required to exceed the design plastic resistance of the beam flange $N_{t,Rd}$:

$$N_{t,Rd} = \frac{b_f \cdot t_{fb} \cdot f_{yb}}{\gamma_{M0}} = \frac{110 \cdot 9.2 \cdot 235}{1,00} = 237.82kN$$

With b_f The beam flange width

t_{fb} The beam flange thickness

fyb The yield strength of the beam

So, we have

 $F_W = min (N_{t.Rd}, \gamma F_{Rd}) = min (237,82kN; 237kN) = 237kN$

The weld size design for ar:

$$a_f \ge \frac{F_w \cdot \gamma_{M2} \cdot \beta_W}{f_u \cdot b_f \cdot \sqrt{2}} = \frac{237000 \cdot 1,25 \cdot 0,8}{360 \cdot 110 * \sqrt{2}} = 4,23mm$$

With F_w The design resistance of the weld

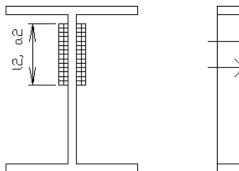
b_f The beam flange width

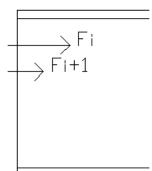
fu The ultimate tensile strength of the weaker part

βw The correlation factor

 γ_{M2} The partial safety factor for welds

In SCIA Engineer:


5.1. Flange welds


data				
Mj,y,Rd	35.75	kNm		
а	1.40			
h	210.80	mm		
FRd	237.43	kN		
Nt,Rd	237.82	kN		
fu	360.00	N/mm ²		
βw	0.80			
minimum af		mm		
af	5.00	mm		

Calculated using Internal forces

The weld size \mathbf{a}_f is then designed similarly as in the previous, with the only difference that in the \mathbf{F}_{Rd} does not take into account the connection moment resistance $\mathbf{M}_{j,Rd}$, but direct design moment \mathbf{M}_{Ed} .

6.2. Calculation of aw

For all possible bolt groups, the maximum tension pro unit length is calculated.

The tension pro unit length is (Fi + Fi+1)/l2.

12 is taken as the effective length of non-circular pattern for the considered bolt group.

On the weld 2 x I2 x a2, the normal force N (=F_{i+} F_{i+1}) and the shear force D is acting. The shear force D is taken as that part of the maximum internal shear force on the node that is acting on the bolt rows i and i+1. To determine the weld size a_2 in a connection, we use a iterative process with a_2 as parameter until the Von Mises rules is respected:

$$\sqrt{\sigma_{_{_{1}}}^{^{2}}+3\cdot\left(\tau_{_{_{1}}}^{^{2}}+\tau_{_{_{2}}}^{^{2}}\right)}\!\leq\!\frac{f_{u}}{\beta_{w}\cdot\gamma_{M_{w}}}\quad\text{and}\;\;\sigma_{1}\leq\!\frac{f_{u}}{\gamma_{M_{w}}}$$

$$\sigma_1 = \tau_2 = \left(\frac{N}{A}\right) \frac{1}{\sqrt{2}}$$

$$\tau_1 = \frac{D}{2 \cdot a_2 \cdot l_2}$$

With

fu the ultimate tensile strength of the weaker part

 β_W The correlation factor

γ_{Mw} The partial safety factor for welds

A 2 a₂ l₂

In SCIA Engineer:


5.2. Web welds

data		
M	10.00	kNm
N	0.00	kN
V	10.00	kN
fu	360.00	N/mm ²
βw	0.80	
a1	3.00	mm
a3	3.00	mm
11	110.00	mm
12	168.40	mm
I 3	40.05	mm
Α	1477.40	mm ²
Ι	13665133.83	mm ⁴
minimum aw (a2)	1.00	mm
aw	3.00	mm

6.3. Calculation with the internal forces

In the previous chapters the calculation of a_f and a_w are given, using the design resistance values. In SCIA Engineer it is also possible to calculate a_f and a_w using the internal forces of the chosen combination or load case. This will result in a lower value for the welds than with the previous calculation, since the internal forces are lower than the design forces, if the connection is satisfying all checks.

You can activate this in SCIA Engineer via "Steel -> Connections -> Connections setup -> Frame bolted/welded" and here with the option "Use internal forces for weld size calculation".

7. Ductility class

7.1. Ductility classes

The following classification is valid for joints:

Class 1 joint: Mj,Rd is reached by full plastic redistribution of the internal forces within the joints and a sufficiently good rotation capacity is available to allow a plastic frame analysis and design.

Class 2 joint: Mj,Rd is reached by full plastic redistribution of the internal forces within the joints but the rotational capacity is limited. An elastic frame analysis possibly combined with a plastic verification of the joints has to be performed. A plastic frame analysis is also allowed as long as it does not result in a too high required rotation capacity of the joints where the plastic hinges are likely to occur.

Class 3 joint: brittle failure (or instability) limits the moment resistance and does not allow a full redistribution of the internal forces in the joints. It is compulsory to perform an elastic verification of the joints unless it is shown that no hinge occurs in the joint locations.

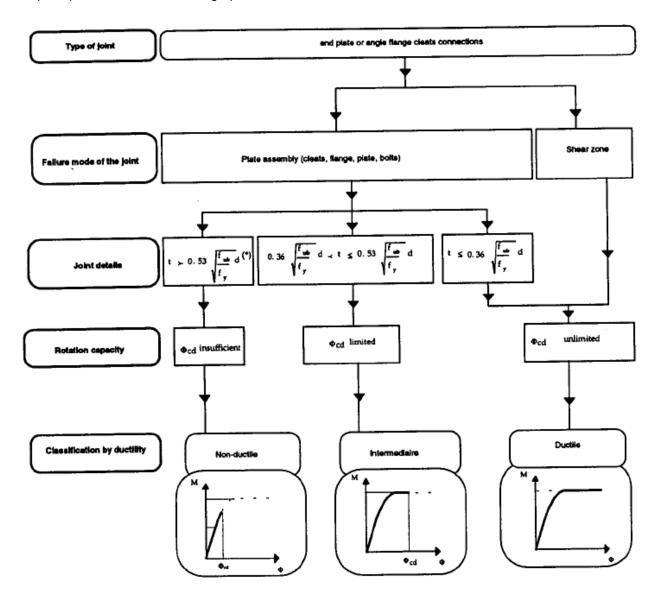
From this description it is clear that it is better to modell a joint as a ductile joint. In this case, when failure appears, the load can be transferred to other parts of the joint and you can see that it is going to brake slowly: you can see that the column web is yieling for example. If you have a brittle failure mode (non-ductile) the connection will brake immediately when reaching the failure mode.

7.2. Ductility classification for bolted joints

If the failure mode of the joint is the situated in the shear zone of the column web, the joint is classified as a ductile, i.e. a class 1 joint .

If the failure mode is not in the shear zone, the classification is based on the following:

	Classification by ductility	Class
$t \le 0.36 \sqrt{\frac{f_{ub}}{f_y}} d$	Ductile	1
$0.36\sqrt{\frac{f_{ub}}{f_y}d} < t \le 0.53\sqrt{\frac{f_{ub}}{f_y}d}$	Intermediary	2
$t > 0.53 \sqrt{\frac{f_{ub}}{f_y}} d$	Non-ductile	3


with t the thickness of either the column flange or the endplate

d the nominal diameter of the bolts

f_{ub} the ultimate tensile strength of the bolt

f_y the yield strength of the proper basic component

This principle is also shown in the graph below:

Calculation of this example following the schema above:

Type of joint: We have an end plate, so we can follow the schema

Failure mode of the joint: We know the tension in the bolts is limited by the column web in shear (see also chapter "Calculation of MRd). So the failure mode is in the shear zone. This will lead directly to a ductile joint.

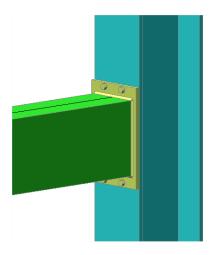
And this is also shown in SCIA Engineer:

4.4. Ductility classification

The failure mode is situated in the column shear zone.

This results in a ductile classification for ductility: class 1.

7.3. Ductility classification for welded joints

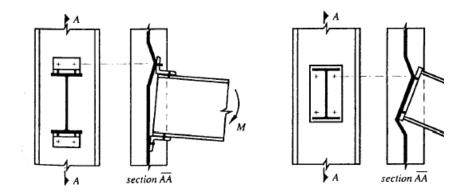

If the failure mode of the joint is the situated in the shear zone of the column web, the joint is classified as a ductile, i.e. a class 1 joint. If the failure mode is not in the shear zone, the joint is classified as intermediary for ductility, i.e. a class 2 joint.

8. Extra options in SCIA Engineer

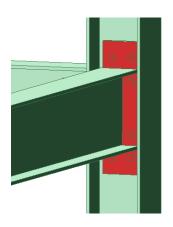
8.1. RHS beam

In SCIA Engineer it is possible to use an RHS beam and make a between this beam and a I or H column. For more info about this topic, we refer to Ref.[2].

A connection with an RHS beam can be found in **example CON_005.esa**, **node N7**.



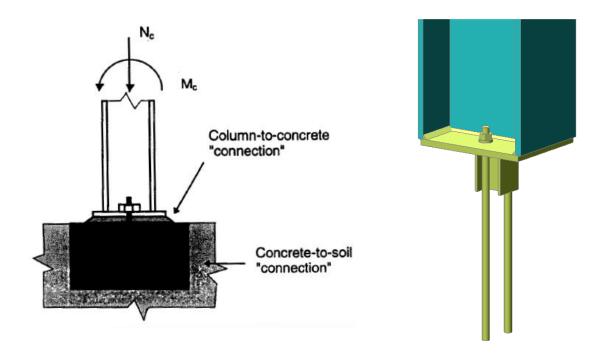
8.2. Column in minor axis configuration


In beam-to-column minor-axis joints, the beam is directly connected to the web of an I-section column, causing bending about the minor-axis of the column section. In order to determine the strength of a column web in bending and punching, the following failure mechanisms are considered:

- 1. Local mechanism: the yield pattern is localised in the compression zone or in the tension zone
- 2. Global mechanism: the yield line pattern involves both compression and tension zone.

For more info about this topic, we refer to Ref.[2].

An example of a minor axis connection is given in **Example CON_007.esa**, node N4.



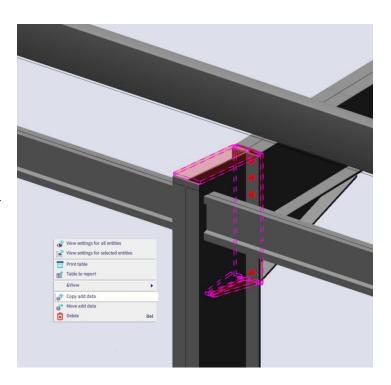
8.3. Base plate connections: shear iron, flange wideners

In a column base, 2 connection deformability's need to be distinguished:

- 1. the deformability of the connection between the column and the concrete foundation
- 2. the deformability of the connection between the concrete foundation and the soil.

In the Frame Connect base plate design, the column-to-concrete "connection' is considered.

For more info about base plate design (shear irons, etc...), we refer to Ref.[2]. An example of a base plate connection in SCIA Engineer is given in **Example CON_005.esa**, **Node N9**


8.4. Extra options for the calculation of connections

In SCIA Engineer it is possible to perform an overall check for multiple connections at the same time. For example we can have a look at **example CON_008.esa**. In this project several connections have been input.

8.4.1. Copy of connections

It is possible to select a connection and to copy this connection to another node. So first you have to select the connection and afterwards you can right click on the screen and choose for "Copy add data Conn".

Afterwards you have to select the nodes to which you want to copy your connection and click on escape to end this "copy function".

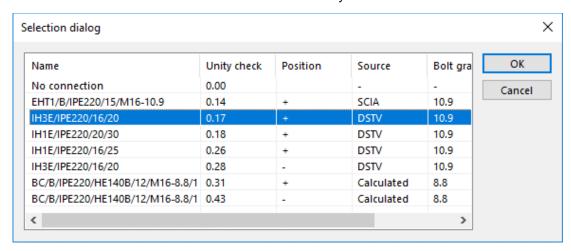
8.4.2. Multiple check of connections

With the option "Overall steel connections check" in the menu "Design > Steel Connections" you can do an overall check for all connections in a project. In the preview window, you will find a list of all connections, with all checks next to it.

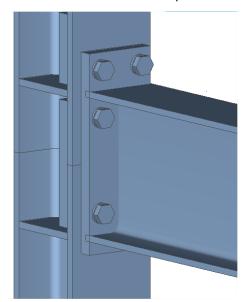
Check of connection

Name	Node	Case	Beam	uc M [-]	uc V [-]	uc N [-]	Stiffness
Conn	N2	LC1	B3	0,29	0,05	0,00	Not ok
Conn1	N5	LC1	B6	0,34	0,05	0,00	Not ok
Conn2	N9	LC1	B9	0,38	0,15	0,00	Not ok

8.4.3. Expert system


Open example CON_004.esa.

Now delete the connection "Conn" in this example and add a new connection to this node. In the Actions menu, you will the option "Load from expert database" and choose for this option:



This option is only available if you did not add anything yet to the connection.

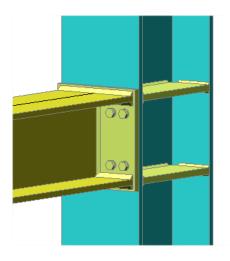
In this expert database, you will see some registered connections in SCIA Engineer and the unity check of this connection. Choose the third connection with a unity check of 0.17.

Now this connection will be input on the node and you can adapt this default connection afterwards.

When selecting a connection, you can choose for the option "Save to expert database" and save your connection in this database and use it again in another project.

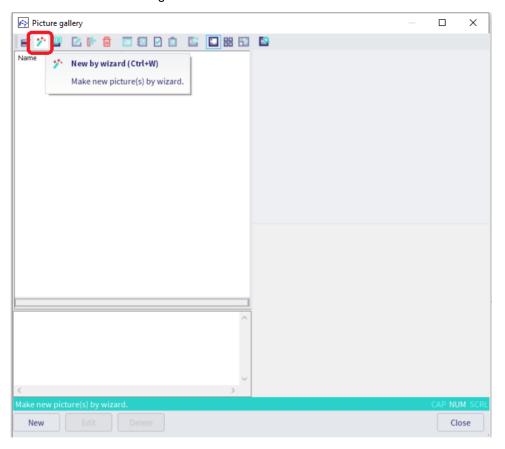
8.4.4. The use of 4 bolts / row

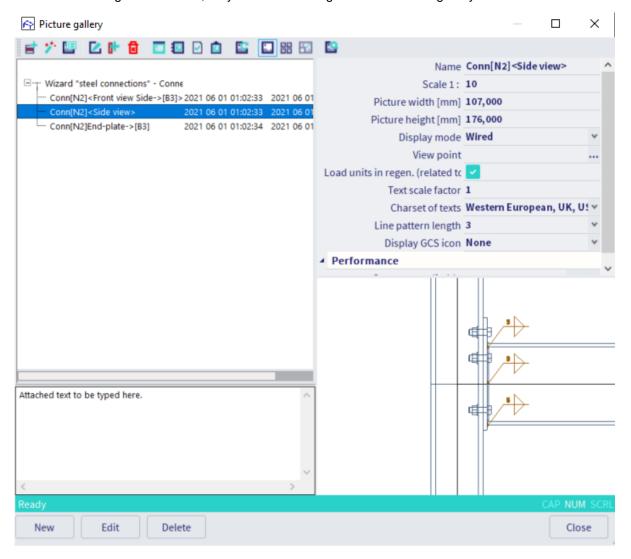
When 4 bolts per row are used, additional capacity F_{add} is added to the bolt row/group capacity of the column flange and/or the endplate. F_{add} is defined for the following conditions:


- the capacity of the inner two bolts is equal to the bolt tension resistance (failure mode 3) or is defined by a circular pattern
- the bolt row / group is stiffened
- the bolt group contains only 1 bolt row

For more info about this topic, we refer to Ref.[2].

This option to use 4 bolts in a row can be activated with the manage button behind the bolts.


An example of this connection can be found in example CON_005.esa, node N8.


8.4.5. Monodrawings

It is possible to make automatic connection drawings in SCIA Engineer. To use this option, it is enough to select the functionality "Steel connections" in the project data and define at least one steel connection.

After this you can open the picture gallery from "Menu bar" > "Libraries" and choose to generate steel connections monodrawings from the wizard:

When the drawings are finished, they can be found again in the Picture gallery:

9. Welded connections

In this chapter we will show the calculation of a welded connection using example **CON_005.esa**, **node N3**.

The calculation is done with the Safety factors according the EN 1993-1-8 (Ref.[1]) and the following internal forces:

According to EN 1993-1-8

National annex: Standard EN

Partial safety fa	actors
Gamma M0	1.00
Gamma M1	1.00
Gamma M2	1.25
Gamma M3	1.25

1. Internal forces

tert		
NEd	148.84	kN
Vz,Ed	85.18	kN
My,Ed	-123.96	kNm

Tension top

Note: NEd <= 0.05 * Npl,Rd,Beam.

A negative moment will result in tension at the top flange of the beam.

Calculation Vwp,Rd: Column web panel in shear

$$V_{wp,Rd} = \frac{0.9 f_y A_{vc}}{\sqrt{3} \gamma_{M0}}$$

When a web doubler is used:

$$A_{vc}' = A_{vc} + b_s t_s$$

$$A_{vc} = A - 2bt_f + (t_w + 2r)t_f$$

$$A_{vc} = 13140 - 2 \cdot 280 \cdot 18 + (10.5 + 2 \cdot 24)18$$

$$A_{vc}=4113mm^2$$

$$A_{vc}\, '=4113+172\cdot 10.5=5919mm^2$$

Vwp, Rd =
$$\frac{0.9 \cdot 235 \cdot 5919}{\sqrt{3} \cdot 1.0} = 727,77kN$$

And the same is shown in SCIA Engineer:

2.1.1. Column web panel in shear

According to EN 1993-1-8 Article 6.2.6.1

Vwp,Rd data		
Column web in shear (Vwp,Rd/Beta)	722.77	kN
Beta	1.00	
Avc	5919.00	mm ²

Note: The shear area Avc has been increased due to the presence of a web doubler.

Calculation F_{c,wc,Rd}: Column web in compression

$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}} \text{ but } F_{c,wc,Rd} \leq \frac{\omega \cdot k_{wc} \cdot \rho \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}}$$

And in SCIA Engineer:

2.1.2. Column web in compression

According to EN 1993-1-8 Article 6.2.6.2

Fc,wc,Rd	data	
beff,c,wc	249.83	mm
twc	15.75	mm
ω1	0.80	
ω2	0.55	
ω	0.80	
dwc	196.00	mm
λp,rel	0.44	
ρ	1.00	
kwc	1.00	
Fc,wc,Rd	736.92	kN

Note: The thickness two has been increased due to the presence of a web doubler.

Calculation F_{c,fb,Rd}: Beam flange in compression

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}}$$

$$M_{c,Rd} = \frac{M_{pl,Rd}}{\gamma_{M0}} = \frac{655}{1.0} = 655kNm$$

$$F_{c,fb,Rd} = \frac{655000kNmm}{550 - 17.2} = 1229kN$$

In SCIA Engineer:

2.1.3. Beam flange and web in compression

According to EN 1993-1-8 Article 6.2.6.7

Fc,fb,Rd data				
Section class	1			
Mc,Rd	654.95	kNm		
hb-tfb	532.80	mm		
Fc,fb,Rd	1229.25	kN		

Calculation F_{t,fc,Rd}: Column flange in bending

$$F_{c,fc,Rd} = (t_{wc} + 2r_c + 7kt_{fc}) \frac{t_{wc} f_y}{\gamma_{M0}}$$

$$F_{c,fc,Rd} = (10.5 + 2 \cdot 24 + 7 \cdot 1 \cdot 18) \frac{17.20 \cdot 235}{1.0} = 745kN$$

In SCIA Engineer:

2.1.4. Column flange in bending (EN 1993-1-8 art. 6.2.6.4)

(Ft,fc,Rd)	data	
(Ft,fc,Rd)	745.75	kN
k	1.00	

Calculation Ft,wc,Rd: Column web in tension

$$F_{t,wc,Rd} = \frac{\rho b_{eff} t_{wc} f_{y}}{\gamma_{M0}}$$

$$t_{wc} = 1.4 t_{w} = 1.4 \cdot 10.5 = 14.7 mm$$

$$b_{eff} = t_{fb} + 2\sqrt{2}a + 5(t_{fc} + r)$$

$$b_{eff} = 17.2 + 2\sqrt{2} \cdot 9 + 5(18 + 24) = 252 mm$$

$$\rho = \rho_{1}$$

$$\rho_{1} = \frac{1}{\sqrt{1 + 1.3 \left(\frac{b_{eff} t_{wc}}{A_{vc}}\right)^{2}}} = 0.81$$

$$F_{t,wc,Rd} = \frac{0.81 \cdot 252 \cdot 14.7 \cdot 235}{1.0} = 705 kN$$

In SCIA Engineer:

2.1.5. Column web in tension (EN 1993-1-8 art. 6.2.6.3)

(Ft,wc,Rd) data				
(Ft,wc,Rd)	704.55	kN		
beff	249.83	mm		
twc	14.70	mm		
omega_1	0.82			
omega_2	0.58			
omega	0.82			

<u>Calculation MRd</u>: <u>Design moment resistance</u>

705 kN x 0.532 m = 375 kNm

In SCIA Engineer:

2.2. Determination of Mj,y,Rd

According to EN 1993-1-8 Article 6.2.7.1 (4)

Mj,Rd data				
F	704.55	kN		
h	532.80	mm		
Mj,Rd	375.39	kNm		

Calculation af

The weld size a_f is designed according to the resistance of the joint. The design force in the beam flange can be estimated as:

$$F_{Rd} = \frac{M_{Rd}}{h}$$

$$F_{Rd} = \frac{375}{0.532} = 705kN$$

The design resistance of the weld F_w shall be greater than the flange force F_{Rd} , multiplied by a factor γ . The value of the factor γ is:

 γ = 1.7 for sway frames

 γ = 1.4 for non sway frames

However, in no case shall the weld design resistance be required to exceed the design plastic resistance of the beam flange $N_{t,Rd}$:

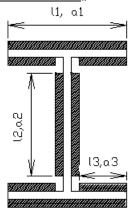
$$N_{t,Rd} = \frac{b_f \cdot t_{fb} \cdot f_{yb}}{\gamma_{M_0}}$$

$$N_{t,Rd} = \frac{210 \cdot 17.2 \cdot 235}{1.0} = 849kN$$

 $F_w = min (N_{t,Rd}, \gamma F_{Rd}) = min (849, 1.4 x 705) = 849 kN$

The weld size design for a_f, using Annex M of EC3

$$\begin{aligned} a_f &\geq \frac{F_w \cdot \gamma_{Mw} \cdot \beta_W}{f_u \cdot b_f \cdot \sqrt{2}} \\ a_f &\geq \frac{849000 \cdot 1.25 \cdot 0.8}{360 \cdot 210 \cdot \sqrt{2}} = 7.94mm \end{aligned}$$


We take a_f=8 mm.

In SCIA Engineer

6. Design calculations 6.1. Flange welds

375.39	kNm
1.40	
532.80	mm
986.38	kN
771.65	kN
360.00	MPa
0.80	
6.35	mm
7.00	mm
	1.40 532.80 986.38 771.65 360.00 0.80 6.35

Calculation of aw

The section is sollicitated by the moment M, the normal force N and the shear force D.

The moment M is defined by the critical design moment resistance of the connection. The normal force N is taken as the maximum internal normal force on the node, the shear force D is taken as the maximum internal shear force on the node.

M = 375 kNm

N = 148 kN

D = 85 kN

(see calculation of MRd and the internal forces, given in the beginning of this chapter)

To determine the weld size a_2 in a connection, we use an iterative process with a_2 as parameter until the Von Mises rules is respected:

$$\begin{split} &\sqrt{\sigma_{_{1}}^{2}+3\cdot\left(\tau_{_{1}}^{2}+\tau_{_{2}}^{2}\right)} \leq \frac{f_{u}}{\beta_{w}\cdot\gamma_{M_{w}}} \quad and \quad \sigma_{1} \leq \frac{f_{u}}{\gamma_{M_{w}}} \\ &\sigma_{1}=\tau_{2}=\left(\frac{N}{A}+\frac{M\cdot l_{2}}{2\cdot I}\right)\frac{1}{\sqrt{2}} \\ &\tau_{1}=\frac{D}{2\cdot a_{_{2}}\cdot l_{_{2}}} \end{split}$$

With fu the ultimate tensile strength of the weaker part

βw the correlation factor

γ_{Mw} the partial safety factor for welds

In SCIA Engineer:

6.2. Web welds

data		
M	375.39	kNm
N	148.84	kN
V	85.18	kN
fu	360.00	MPa
βw	0.80	
a1	7.00	mm
a3	7.00	mm
11	210.00	mm
12	450.40	mm
13	75.45	mm
Α	6854.20	mm ²
I	393198742.61	mm ⁴
minimum aw (a2)	5.12	mm
aw	6.00	mm

10. Pinned joints

In SCIA Engineer four types of joints are supported:

Type 1	welded plate in beam, welded to column
Type 2	bolted plate in beam, welded to column
Type 3	bolted angle in beam and column
Type 4	short endplate welded to beam, bolted in column

For each type, the design shear resistance V_{Rd} (taking into account the present normal force N) and the design compression/tension resistance N_{Rd} are calculated.

The design shear resistance is calculated for the following failure modes:

- design shear resistance for the connection element
- design shear resistance of the beam
- design block shear resistance
- design shear resistance due to the bolt distribution in the beam web
- design shear resistance due to the bolt distribution in the column

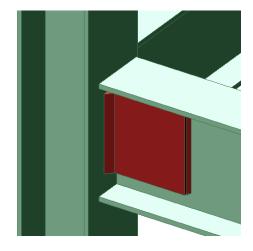
The design compression/tension resistance is calculated for the following failure modes:

- design compression/tension resistance for the connection element
- design compression/tension resistance of the beam
- design tension resistance due to the bolt distribution in the column

In Ref.[2], more info on the used formulas is given.

10.1. Welded fin plate connection

In this chapter we will show the calculation of a welded fin plate connection using example **CON_009.esa**, **node N2**.


The calculation is done with the Safety factors according the EN 1993-1-8 (Ref.[1]) and the following internal forces:

The limit capacities are according to EN 1993-1-8

Partial safety factors			
Gamma M0	1.00		
Gamma M1	1.00		
Gamma M2	1.25		
Gamma M3	1.25		

1. Internal forces

C1		
N	-1.43	kN
Vz	7.97	kN
Му	0.00	kNm

10.1.1. Calculation Design Shear Resistance VRd for Connection Element

Transversal section of the plate: $A_{pl} = 2 \cdot h_{pl} \cdot t_{pl} = 3912 \, mm^2$ (2 plates)

Normal stress:
$$\sigma_N = \frac{N}{A_{pl}} = \frac{-1440}{3912} = -0.3681 \frac{N}{mm^2}$$

Flexion module:
$$W_{pl} = 2 \cdot \frac{t_{pl} \cdot h_{pl}^2}{6} = 106276 mm^3$$

Design Shear Resistance: a= 163/2 = 81,5 mm is the centre

$$V_{Rd1} = \frac{A \cdot f_y}{\gamma_{M0} \cdot \sqrt{3}} = \frac{3912 \cdot 235}{1,00 \cdot \sqrt{3}} = 530769N = 530,77kN$$

$$V_{Rd2} = \left[\frac{f_y}{\gamma_{M0}} - \sigma_N\right] \cdot \frac{W}{a} = \left[\frac{235}{1,00} - (-0.3681)\right] \cdot \frac{106276}{81,5} = 306\,920N = 306,92kN$$

$$V_{Rd} = \min(V_{Rd1}; V_{Rd2}) = 306,92$$
kN

In SCIA Engineer:

2. Design shear resistance

2.1. Design shear resistance VRd for connection element

data			
sigmaN	-0.37	MPa	
Α	3912.00	mm ²	
Av,net	3912.00	mm ²	
W	106276.00	mm ³	
a	82.00	mm	
VRd - bending	304.10	kN	
VRd - shear	530.77	kN	

10.1.2. Calculation Design Shear Resistance VRd for Beam

Shear Area : $A_v = A - 2 \cdot b \cdot t_f + \left(t_w + 2 \cdot r\right) \cdot t_f = 1914,76 mm^2$

Shear Resistance :
$$VRd = \frac{A_v \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = 259789, 5N = 259,79kN$$

In SCIA Engineer:

2.2. Design shear resistance VRd for beam

data		
Av	1912.76	mm ²
VRd	259.52	kN

10.1.3. Calculation Compression/Tension Resistance NRd for connection element

Area of the element : $A_{pl} = 2 \cdot h_{pl} \cdot t_{pl} = 3912 \, mm^2$

Tension/Compression Resistance :
$$N_{Rd} = \frac{A_{pl} \cdot f_y}{\gamma_{Max}} = 919320N = 919,32kN$$

In SCIA Engineer:

3.1. Design compression/tension resistance NRd for connection element

data			
Α	3912.00	mm ²	
NRd	919.32	kN	

10.1.4. Calculation Design Tension Resistance NRd for Beam

Area of the Beam : $A = 0.003910 \text{m}^2$

Tension Resistance : $N_{Rd} = \frac{A \cdot f_y}{\gamma_{M_0}} = 835318.18N = 835kN$

In SCIA Engineer:

3.2. Design compression/tension resistance NRd for beam

data		
Α	3910.00	mm ²
NRd	918.85	kN

10.1.5. Weld size Calculation for Plate, Beam and Column

To determine the weld size a for the plate on the beam and on the column, we must use a iterative process with a as parameter until the Von Mises rules is respected (Annex M/EC3):

$$\sqrt{\sigma_{_{_{1}}}^{2}+3\cdot\left(\tau_{_{_{1}}}^{2}+\tau_{_{2}}^{2}\right)}\!\leq\!\frac{f_{u}}{\beta_{w}\cdot\gamma_{M_{w}}}\quad\text{and}\quad\sigma_{1}\leq\frac{f_{u}}{\gamma_{M_{w}}}$$

We'll only check the weld size for the final value of a. For the weld between plate and beam we find a=4mm and for weld between plate and column, the weld size is a=11mm.

Weld size Plate/Beam

We define the play as the effective distance between the end of the beam and the flange of the column. In this case, the play is 10mm. By using EC3 and the Chapter 11 of the manual, we compute the following parameters:

Weld size: a=0.004m

Weld Length: $l_1 = h_{nl} - 2 \cdot t_{nl} = 0.163 - 2 \cdot 0.012 = 0.139 \, m$

$$l_2 = b_{pl} - Play - 2 \cdot t_{pl} = 0.13m$$

$$1 = 1_{pl} - Play = 0.164 - 0.01 = 0.154m$$

By EC3: f_{uw} =36000000N/m² and β_w =0.8. The parameters are:

$$g = \frac{\left(0.707 \cdot a \cdot l_1 + 0.577 \cdot a \cdot l_1\right) \cdot l}{0.577 \cdot a \cdot l_1 + 1.414 \cdot a \cdot l_2} = 104.10$$

$$\delta = \frac{0.577 \cdot a \cdot l_1}{0.577 \cdot a \cdot l_1 + 1.414 \cdot a \cdot l_2} = 0.30377$$

$$\mu = \frac{0.117 \cdot a \cdot l_1^2}{0.117 \cdot a \cdot l_1^2 + 0.577 \cdot a \cdot l_2 \cdot h_{pl}} = 0.15603$$

$$\Gamma = \frac{0.707 \cdot a \cdot l_1}{0.707 \cdot a \cdot l_1 + 1.14 \cdot a \cdot l_2} = 0.3987$$

$$L = 10 + g = 10 + 104,10 = 114,10mm$$

Shear force on one plate: $D = \frac{V_{Rd}}{2} = \frac{259,79}{2} = 129,9kN \text{ (for one plate)}$

Normal force on one plate: $N = \frac{N_{Ed}}{2} = \frac{-1.44}{2} = -0.72kN$

Moment on the plate: $M = D \cdot L = 129,89 \cdot 0,1141 = 14,82 \text{kNm}$

88

$$\tau_1 = \sigma_1 = \frac{6 \cdot \mu \cdot M}{\sqrt{2} \cdot a \cdot l_1^2} + \frac{\Gamma \cdot N}{\sqrt{2} \cdot a \cdot l_1} = 127.7 \frac{N}{mm^2}$$
$$\tau_2 = \frac{\delta \cdot D}{a \cdot l_1} = 70.97 \frac{N}{mm^2}$$

$$\frac{\sqrt{\sigma_{_{1}}^{2} + 3 \cdot (\tau_{_{1}}^{2} + \tau_{_{2}}^{2})}}{f_{u}/\beta_{w} \cdot \gamma_{M_{w}}} = 0.63 \le 1 \quad \text{and} \quad \frac{\sigma_{_{1}}}{f_{u}/\gamma_{M_{w}}} = 0.35 \le 1$$

Weld Check 2:

$$\sigma_{1} = \tau_{1} = \frac{(1 - \delta) \cdot D}{2 \cdot \sqrt{2} \cdot a \cdot l_{2}} = 61,67 \frac{N}{mm^{2}}$$

$$\tau_{2} = \left(\frac{(1 - \mu) \cdot M}{h \cdot a \cdot l_{2}} + \frac{(1 - \Gamma) \cdot N}{2 \cdot a \cdot l_{2}}\right) = 147,99 \frac{N}{mm^{2}}$$

In SCIA Engineer:

5. Weldsize calculation

5.1. Weldsize plate/beam

data			
Fu	360.00	MPa	
beta	0.80		
a	4.00	mm	
11	139.00	mm	
12	130.00	mm	
L	114.10	mm	
g	104.10	mm	
delta	0.30		
mu	0.16		
tau	0.40		
D	129.76	kN	
N	-0.72	kN	
M	14.81	kNm	
for weld check 1:			
sigma,1	127.57	MPa	
tau,1	127.57	MPa	
tau,2	70.89	MPa	
for weld check 2:			
sigma,1	61.61	MPa	
tau,1	61.61	MPa	
tau,2	147.84	MPa	

Weld size Plate/Column

Weld size: a=0.011 m

Normal Force: N=-1440N=-1,44kN

Moment: $M = D \cdot L = 259790 \cdot 0.082 = 21302Nm = 21,3kNm$

Stress Calculation:

$$\sigma_{1} = -\tau_{1} = \frac{N}{2 \cdot \sqrt{2} \cdot a \cdot l} + \frac{M}{W} = \frac{N}{2 \cdot \sqrt{2} \cdot a \cdot l} + \frac{D \cdot L}{2 \cdot \sqrt{2} \cdot a \cdot \frac{h_{pl}^{2}}{6}} = 154,3 \frac{N}{mm^{2}}$$

$$\tau_2 = \frac{D}{2 \cdot a \cdot l} = 76,68 \frac{N}{mm^2}$$

Unity Check:
$$\frac{\sqrt{\sigma_{_1}^2 + 3 \cdot \left(\tau_{_1}^2 + \tau_{_2}^2\right)}}{f_u/\beta_w \cdot \gamma_{M_w}} = 0.75 \le 1$$

In SCIA Engineer:

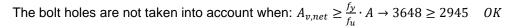
5.2. Weldsize plate/column

data			
Fu	360.00	MPa	
beta	0.80		
a	11.00	mm	
L	82.00	mm	
D	259.52	kN	
N	-1.43	kN	
M	21.28	kNm	
sigma,1	155.21	MPa	
tau,1	155.21	MPa	
tau,2	72.37	MPa	

10.2. Bolted fin plate connection

In this chapter we will show the calculation of a bolted fin plate connection using example **CON_010.esa**, **node N2** for combination C1.

Transversal section of the plate:

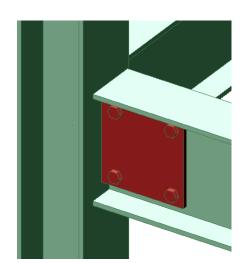

$$A_v = 2 \cdot h \cdot t = 2 \cdot 188 \cdot 12 = 4512 \, mm^2$$
 (2 plates)

$$A_{v,net} = A - bolts * (t * d0) = 4512 - 4 * 12 * 18 = 3648mm^2$$

Normal Stress:
$$\sigma_N = \frac{N}{A} = \frac{-1440}{4512} = -0.32 \frac{N}{mm^2}$$

Flexion Module : $W = 2 \cdot \frac{t \cdot h^2}{6} = 141376 mm^3$

Bolt Centre: a=34mm (= X1 parameter of the bolt position)


When $A_{v,net}$ is less than this limit, an effective shear area of $A_v = \frac{f_u}{f_y} \cdot A_{v,net}$ may be assumed, else $A_v = A_v$

Design Shear Resistance:

$$V_{rd1} = \frac{A_v \cdot f_y}{v_{M0} \cdot \sqrt{3}} = \frac{4512 \cdot 235}{1.00 \cdot \sqrt{3}} = 612176N = 612,76kN$$

$$V_{rd2} = \left[\frac{f_y}{f_u} \cdot \sigma_N\right] \cdot \frac{W}{a} = \left[\frac{235}{360} \cdot (-0.32)\right] \cdot \frac{141376}{34} = 978488N = 978.49kN$$

$$V_{rd} = \min(V_{rd1}; V_{rd2}) = (612,76; 978,49) = 612,76kN$$

90

91

In SCIA Engineer:

2. Design shear resistance

2.1. Design shear resistance VRd for connection element

data			
sigmaN	0.00	MPa	
Α	4512.00	mm ²	
Av,net	3648.00	mm ²	
W	141376.00	mm ³	
a	34.00	mm	
VRd - bending	977.16	kN	
VRd - shear	612.18	kN	

Calculation Design Shear Resistance VRd for Beam

Shear Area : $A_v = A - 2 \cdot b \cdot t_f + (t_w + 2 \cdot r) \cdot t_f = 3912 - 2 \cdot 120 \cdot 10 + (6 + 2 * 15) * 10 = 1872 mm^2$ Net Area : $A_{v,net} = A_v - \#bolts\ per\ section \cdot t_w \cdot d_0 = 1872 - 2 \cdot 6 \cdot 18 = 1656 mm^2$

The bolt holes are not taken into account when: $A_{v,net} \ge \frac{f_y}{f_u} \cdot A_v \to 1656mm^2 \ge 1222mm^2$ OK

When $A_{v,net}$ is less than this limit, an effective shear area of $A_{v1} = \frac{f_u}{f_v} \cdot A_{v,net}$ may be assumed, else $A_{v1} = A_v$ Design Shear Resistance:

$$V_{Rd} = \frac{A_{\nu 1} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = \frac{1872 \cdot 235}{\sqrt{3} \cdot 1,00} = 253,99kN$$

In SCIA Engineer:

2.2. Design shear resistance VRd for beam

data				
Av	1912.76	mm ²		
Av,net	1689.56	mm ²		
VRd	259.52	kN		

10.2.3. Calculation Design Shear Resistance VRd for Bolt in Beam

The calculation of the shear resistance for bolt in beam is based on the following equation to be solve

$$V_{Rd}^{2} \cdot \left(\frac{1}{n^{2}} + \frac{a^{2} \cdot c^{2}}{I_{p}^{2}} + \frac{2 \cdot a \cdot c}{n \cdot I_{p}} + \frac{a^{2} \cdot d^{2}}{I_{p}^{2}}\right) + V_{Rd} \cdot \left(\frac{2 \cdot a \cdot N \cdot d}{I_{p} \cdot n}\right) + \frac{N^{2}}{n^{2}} - Q^{2} = 0$$

Where : a = 0.0995m b = 0.094m c = 0.0655m d = 0.07m

$$I_p = \sum r_i^2 = \sum_{i=1}^4 95.66^2 = 0.036761m^2$$

 $Q = \min(2 \cdot F_{v,Rd}, \min(F_{b,Rd,plate}; F_{b,Rd,beam})) = 31740.8256N$ for two plates, where

•
$$F_{V_{Rd}} = \frac{0.6 \cdot f_{ub} \cdot A_s}{\gamma_{Mb}} = 30144N = 30.1kN$$

•
$$F_{b,Rd,Beam} = \frac{2.5 \cdot \alpha_p \cdot f_u \cdot d \cdot t}{\gamma_{Mb}} = 31740.8256N = 31.7kN$$

with
$$\alpha_p = \min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = 0.444$$

$$\bullet F_{b,Rd,plate} = \frac{2.5 \cdot \alpha_p \cdot f_u \cdot d \cdot t_{pl}}{\gamma_{Mb}} = 122867.712N$$

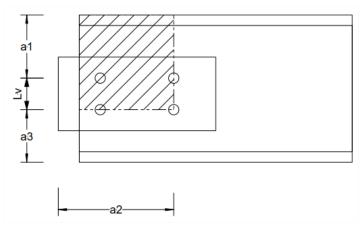
with
$$\alpha_p = \min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = 0.444$$

By solving the second-degree equation, we find VRd = 123kN

In SCIA Engineer:

2.3. Design shear resistance VRd for bolts in beam

Bolt resistance			
e1,el	24.00	mm	
e1,bw	24.00	mm	
p1	140.00	mm	
p2	131.00	mm	
k1 plate	2.03		
k1 beam	2.03		
Alfa_b plate	0.44	-	
Alfa_b beam	1.00		
Alfa_d plate	0.44		
Alfa_d beam	2.34		
Fb,el,Rd	99.94	kN	
Fb,bw,Rd	58.09	kN	
Fv,Rd	30.14	kN	


data		
a	99.50	mm
b	94.00	mm
d	70.00	mm
C	65.50	mm
Ip	36761.00	mm ²
VRd	124.28	kN

10.2.4. Calculation Design Block Shear Resistance Vrd - beam

The design value of the effective resistance to block shear is determined by the following expression:

$$V_{\text{eff},\text{Rd}} = \frac{f_{\text{y}} \cdot A_{\text{v,eff}}}{\sqrt{3} \cdot \gamma_{M_0}} \quad \text{with } A_{\text{v,eff}} = t \cdot L_{\text{v,eff}}$$

The values a1, a2, a3 and Lv are defined as follows:

We determined the effective shear area $A_{\nu,\text{eff}}$ as follows :

$$a_1 = 50mm$$
 $a_2 = 165mm$ $a_3 = 50mm$
 $L_v = h - a_1 - a_3 = 240 - 50 - 50 = 140mm$

$$\begin{split} L_{3} &= \min \left(L_{v} + a_{1} + a_{3}; \left(L_{v} + a_{1} + a_{3} - n \cdot d_{0} \right) \cdot \frac{f_{u}}{f_{y}} \right) \\ &= \min \left(240; 257, 36 \right) = 240mm \\ L_{1} &= \min \left(a_{1}; 5 \cdot d_{0} \right) = \min (50; 90) = 50mm \\ L_{2} &= \left(a_{2} - k \cdot d_{0} \right) \cdot \frac{f_{u}}{f_{y}} = (165 - 2, 5 \cdot 18) \cdot \frac{360}{235} = 183, 83mm \\ &\qquad \qquad \text{with k} = 2.5 \text{ for 2 bolt - rows} \\ L_{v,eff} &= \min \left(L_{v} + L_{1} + L_{2}; L_{3} \right) = \min (373, 83; 240) = 240mm \\ A_{v,eff} &= t \cdot L_{v,eff} = 6 \cdot 240 = 1440mm^{2} \\ V_{eff,Rd} &= \frac{f_{y} \cdot A_{v,eff}}{\sqrt{3} \cdot \gamma_{M0}} = 195375N = 195, 38kN \end{split}$$

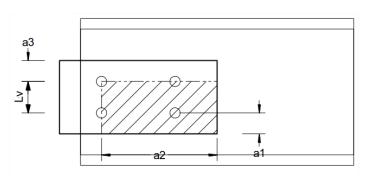
In SCIA Engineer:

2.4. Design block shear resistance VRd - Beam

data		
Ant	793.60	mm ²
Anv	1016.80	mm ²
VRd	252.24	kN

10.2.5. Calculation Design Block Shear Resistance Vrd – connection element (beam side)

The design value of the effective resistance to block shear is determined by the following expression:


$$V_{eff,Rd} = \frac{f_y \cdot A_{v,eff}}{\sqrt{3} \cdot \gamma_{M_0}} \quad \text{with } A_{v,eff} = n \cdot t \cdot L_{v,eff}$$

With: n

number of plate, cleat

t thickness of plate, cleat

The values a1, a2, a3 and Lv are defined as follows:

We determined the effective shear area A_{v,eff} as follows:

$$a_{1} = 24mm a_{2} = 155mm a_{3} = 24mm$$

$$L_{v} = h_{plate} - a_{1} - a_{3} = 188 - 24 - 24 = 150mm$$

$$L_{3} = \min \left(L_{v} + a_{1} + a_{3}; \left(L_{v} + a_{1} + a_{3} - n \cdot d_{0} \right) \cdot \frac{f_{u}}{f_{y}} \right)$$

$$= \min \left(188;177,7 \right) = 177,7mm$$

$$L_1 = \min(a_1; 5 \cdot d_0) = \min(24; 90) = 24mm$$

$$L_2 = (a_2 - k \cdot d_0) \cdot \frac{f_u}{f_v} = (155 - 2, 5 \cdot 18) \cdot \frac{360}{235} = 168,51 mm$$

with
$$k = 2.5$$
 for 2 bolt - rows

$$L_{v,eff} = \min(L_v + L_1 + L_2; L_3) = \min(342,51;177,7) = 177,7mm$$

$$A_{v,eff} = n \cdot t \cdot L_{v,eff} = 2 \cdot 12 \cdot 177,7 = 4264,8mm^2$$

$$V_{eff,Rd} = \frac{f_y \cdot A_{v,eff}}{\sqrt{3} \cdot \gamma_{M0}} = 578636,6N = 578,64kN$$

In SCIA Engineer:

2.5. Design block shear resistance VRd - Connection element on beam side

data		
Ant	3312.00	mm ²
Anv	3288.00	mm ²
VRd	923.04	kN

10.2.6. Calculation Design Compression/Tension Resistance NRd for Connection Element

Area:
$$A = 2 \cdot t \cdot h = 2 \cdot 12 \cdot 188 = 4512 mm^2$$

Net Area :
$$A_{net} = A - 2 \cdot t \cdot 2 \cdot d_0 = 4512 - 2 \cdot 12 \cdot 2 \cdot 18 = 3648 \, mm^2$$

Compression Resistance:

$$N_{Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{4512 \cdot 235}{1,00} = 1060320N = 1060,32kN$$

In SCIA Engineer:

3.1. Design compression/tension resistance NRd for connection element

data		
Α	4512.00	mm ²
A,net	3648.00	mm ²
NRd	945.56	kN

10.2.7. Calculation Design Compression/Tension Resistance NRd for Beam

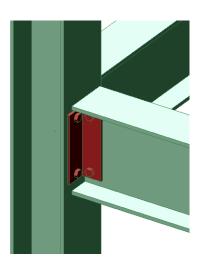
Area : $A = 3912mm^2$

Net Area :
$$A_{net} = A - 2 \cdot t \cdot d_0 = 3912 - 2 \cdot 6 \cdot 18 = 3696 \, mm^2$$

$$\text{Tension Resistance}: \ N_{Rd} = min \! \left(\frac{A \cdot f_y}{\gamma_{M_0}}, \frac{0.9 \cdot A_{_{net}} \cdot f_u}{\gamma_{M_1}} \right)$$

$$= \min\left(\frac{3912 \cdot 235}{1,00}; \frac{0.9 \cdot 3696 \cdot 360}{1,25}\right) = \min(919320; 958003) = 919320N = 919,32kN$$

In SCIA Engineer:


3.2. Design compression/tension resistance NRd for beam

data		
Α	3910.00	mm ²
A,net	3686.80	mm ²
NRd	918.85	kN

94 MV -2021/05/31

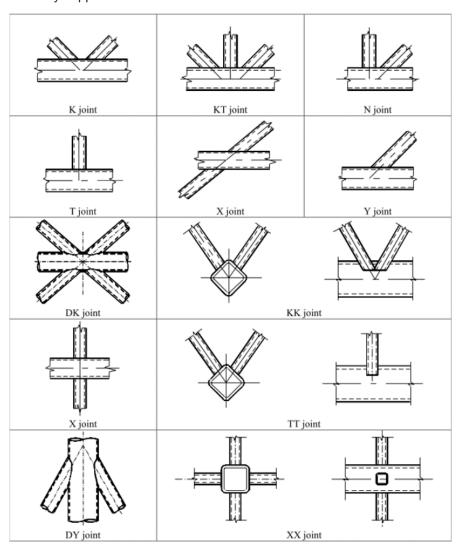

10.3. Bolted cleat connection

An example of this connection can be found in example CON_011.esa, node N2.

10.4. Flexible end plate connection

An example of this connection can be found in example **CON_012.esa**, **node N2**.

11. Hollow section joints

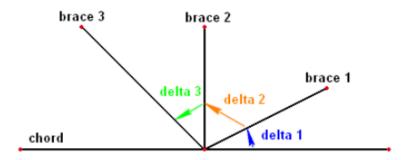

The design of Hollow Section Joints within SCIA Engineer is implemented according to EN 1993-1-8:2005-05, including Corrigendum EN 1993-1-8:2005/AC:2009-07, however for certain parts also different references are taken into account. Such references will be mentioned where relevant.

Used terms and symbols are in line with the main code.

Open example CON_13.esa.

11.1. Joint configuration

The design procedure defined by the EN 1993-1-8 Article 7, may be applied to joint types specified in EN 1993-1-8 Article 7.1.2 Table 7.1. In SCIA Engineer uniplanar configurations T, Y, X, N, K, DY and DK are currently supported.



11.1.1. Automatic recognition

The automatic recognition of joint configuration is based on the Structural model, taking into account all members selected during input of the joint object. The recognition is processed in several steps:

- List of all selected members is created.
- Members with the highest value of Structure type are marked as chord members. User may use for example type **truss chord** with value of 95.
- Remaining members are marked as brace members. User may use for example type truss diagonal with value of 90.

- For each brace member respective delta angle between the brace member and the chord member is measured.
- The brace member with the smallest delta angle is marked as brace 1.
- Depending on the number of brace members, an additional delta angles between brace members are measured. The angles are measured in a continuous direction from angle delta 1. See example picture below.

• The algorithm indicated on the picture below is used for the final determination of the joint configuration.

An additional per-plane validation tests need to be fulfilled in the structural model:

- Axes of all members has to be in one plane.
- Chord members has to be in line, which in terms means use the same eccentricity
- For T, Y, X, DY and DK joint configurations, all the members need to have one intersection point.

An additional cross-section validation tests need to be fulfilled:

- For Circular Hollow Section joints, the cross-sections marked by SCIA Engineer as formcode 3 cross-section, are supported.
- The cross-section id of the chord members have to be identical.

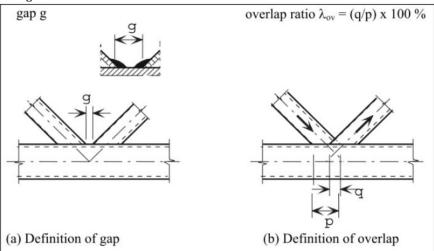
An additional geometry validation tests need to be fulfilled in the structural model:

- · Continuous chord members are supported.
- Continuous brace members are not supported.
- The curved members are not supported.

If the configuration is not recognized, an error massage is displayed during the input of the joint object. User may also modify the geometry or member attributes when a joint already exists and in such case recognized joint configuration is changed to "Not Recognized".

In SCIA Engineer:

1. Joint members info


Chord		
Members	B115, B116	
Cross-section	CHS219.1/12.5	
d_0	219,10	mm
t ₀	12,50	mm
Material	S 355	
f _{y,0}	355,0	MPa
A ₀	8110	mm ²
Wel,y	397000	mm ³
W _{el,z}	397000	mm ³

Brace 1		
Member	B117	
Cross-section	CHS139.7/5.0	
d_1	139,70	mm
t ₁	5,00	mm
θ_1	45,00	deg
Material	S 355	
f _{y,1}	355,0	MPa
Α	2120	mm ²
Wel,y	68800	mm ³
W _{el,z}	68800	mm ³

Brace 2		
Member	B125	
Cross-section	CHS114.3/3.6	
d ₂	114,30	mm
t ₂	3,60	mm
θ_2	45,00	deg
Material	S 355	
f _{y,2}	355,0	MPa
Α	1250	mm ²
Wel,y	33600	mm ³
W _{el,z}	33600	mm ³

11.1.2. **Gap / Overlap**

Geometric definition of gap and overlap is given by EN 1993-1-8 Article 1.5 Figure 1.3. Within SCIA Engineer the Gap / Overlap definition parameters are only valid and displayed for N, K and DK joint configurations.

Either gap or overlap is calculated automatically by default using the structural model geometry and the value is shown in the properties of the joint object with reference to identified brace members. The formulas

for calculation of gap, overlap and also eccentricity are based on a CIDECT publication "Design guide for circular hollow section (CHS) joints under predominantly static loading", 2008:

$$g = \left(e + \frac{d_0}{2}\right) * \frac{\sin(\theta_1 + \theta_2)}{\sin \theta_1} * \frac{d_1}{\sin \theta_2} - \frac{d_1}{2 * \sin \theta_1} - \frac{d_2}{2 * \sin \theta_2}$$

$$e = (\frac{d_1}{2*\sin\theta_1} + \frac{d_2}{2*\sin\theta_2} + g)*\frac{\sin\theta_1*\sin\theta_2}{\sin(\theta_1 + \theta_2)} - \frac{d_0}{2}$$

Eccentricity of the joint is defined in EN1993-1-8 Article 5.1.5 Figure 5.3.

The user is also allowed to input direct values of gap or overlap or define it through manual input of eccentricity. This may be done through "Definition" combo-box item in the properties where the user may select from several options:

- **From structural model** Default option. Both gap and overlap is calculated automatically using the structural model geometry. Eccentricity, gap or overlap items are disabled for editing.
- **Eccentricity** Direct input of eccentricity. Gap or overlap is calculated based on the defined eccentricity value and is disabled for editing. Valid input range is <-1;1>[m].
- **Gap** Direct input of gap. Eccentricity is calculated based on the defined gap value and is disabled for editing. Valid input range is <0;1>[m].
- Overlap Direct input of overlap. Eccentricity is calculated based on the defined overlap value and is disabled for editing. Valid input range is <0;110>[%].

In SCIA Engineer:

2. Joint configuration

Gap / Overlap [Brace 1, Br	ace 2]
Eccentricity	0,00	mm
Gap	39,49	mm

Joint configuration	K
Design tables	7.2, 7.5

11.2. Validation tests

11.2.1. Redistribution of bending moment caused by eccentricity of brace members

As specified in EN 1993-1-8 Article 5.1.5 (6), when brace **eccentricities are within the limits given in 5.1.5(5)**, the moments resulting from the eccentricities should be taken into account in the design of **compression chord members**.

In SCIA Engineer the redistribution for such case is done in several steps:

• The moment caused by eccentricity of braces is calculated as :

$$M_{y,0,ecc} = \sum N_i * \cos \theta_i * e$$

With:

N_i design normal force in the brace

 θ_{i} angle between the brace and chord members

e brace eccentricity

The chord sides in compression are identified. The side is recognized to be in compression if
the formula below produces a positive result. The internal forces from the respective section
closest to the the joint node are used in the formula.

$$\sigma = \frac{N_{Ed}}{A_0} + \frac{|M_{y,0,Ed}|}{W_{el,y,0}} + \frac{|M_{z,0,Ed}|}{W_{el,z,0}}$$

With:

N_{Ed} design normal force in the chord at a joint

A₀ chord cross-section area

 $\begin{array}{ll} M_{y,0,\text{Ed}} & \text{design bending moment around y-axis in the chord at a joint} \\ W_{\text{el},y,0} & \text{elastic section modulus of chord cross-section around y-axis} \\ M_{z,0,\text{Ed}} & \text{design bending moment around z-axis in the chord at a joint} \\ W_{\text{el},z,0} & \text{elastic section modulus of chord cross-section around z-axis} \end{array}$

If no chord side in compression is found, no redistribution is done and a warning is displayed in the detailed the output.

 Ratio for each chord side in compression is calculated based on the number of chord sides in compression. If only one side of chord is in compression the ratio for that side is set to 1 however if two sides of chord is in compression are found, the moment caused by eccentricity of braces is equally redistributed to both sides using coefficient 0,5.

l_{y,l} moment of inertia for 1st chord side in compression

L_i system length of the member on 1st chord side in compression

 $I_{y,(i+1)}$ moment of inertia for 2nd chord side in compression

L_(i+1) system length of the member on 2nd chord side in compression

Additional moments for each of the compression sides of a chord are calculated and added to
initial internal forces of the respective side. As specified by EN 1993-1-8 Article 5.1.5 (8) these
additional moments, resulting in additional stresses, are taken into account in the
determination of the factors k_m, k_n and k_p used in the design of the joint.

As specified in EN 1993-1-8 Article 5.1.5 (7), when the **eccentricities are outside the limits given** in **5.1.5(5)**, the moments resulting from the eccentricities should be taken into account in the design of **the joints and the members**. In this case the moments produced by the eccentricity should be distributed between all the members meeting at the joint, on the basis of their relative stiffness coefficients I/L.

In SCIA Engineer for such case no redistribution is done and warning is displayed in the detailed output. The reason for this is that the redistribution of additional moment should be done in more elaborated way (FEM analysis).

11.2.2. General scope and field of application

As specified in EN 1993-1-8 Article 7.1.1 the method application is valid both for hot hollow sections to EN 10210 and for cold formed hollow sections to EN 10219. This is not checked by SCIA Engineer and is responsibility of the user to ensure that this is fulfilled.

Following items are verified by SCIA Engineer:

General criteria for the joint members given by EN 1993-1-8 Article 7.1.1:

- The nominal yield strength should not exceed 460MPa. If yield strength higher than 355MPa, the static design resistances should be reduced by factor 0,9.
- The nominal wall thickness of hollow sections should not be less than 2,5mm.
- The nominal wall thickness of hollow section chord should not be greater than 25mm unless special measures have been taken.

General field of application for joint members are given in EN 1993-1-8 Article 7.1.2:

- The compression elements of the members should satisfy the requirements for Class 1 or Class 2 given in EN 1993-1-1 for the condition of axial compression.
- The angle θ_i between the chords and the brace members, and between adjacent brace members, should be equal or bigger than 30 degrees.
- In gap joints, the gap between the brace members should not be less than (t₁+t₂). Based on TATA Steel publications also maximum limit of 12*t₀ is checked.
- In overlap type joints, the overlap should be at least 25% in order to be bale place welds.
- If the overlap is larger than 60% in case hidden seam of the overlapped brace is not welded or larger than 80% in case hidden seam of the overlapped brace is welded, a warning requesting additional shear check is displayed.
- Where overlapping brace members have different thickness and/or different strength grades, the member with the lower (t_i*f_{y,i}) value should overlap the other member.
- Where overlapping brace members are of different widths, the narrower member should overlap the wider one.

Not fulfilling any of the tests above will result in a displayed error after a chapter with geometry tests and termination of the check part! The exception are the tests for the yield strength of 355 MPa, eccentricity and maximum overlap limit. These exceptions will result in warning messages in the respective validation parts.

11.2.3. Range of validity for CHS chord and CHS brace members

The EN 1993-1-8 Article 7.4.1 Table 7.1 specifies an additional range of validity tests for the CHS chord joints.

Diameter ratio		$0.2 \le d_i/d_0 \le 1,0$
Chords	tension	$10 \le d_0/t_0 \le 50$ (generally), but:
	compression	Class 1 or 2 and
		$10 \le d_0/t_0 \le 50$ (generally), but:
Braces	tension	$d_i/t_i \le 50$
	compression	Class 1 or 2
Overlap		$25\% \le \lambda_{ov} \le \lambda_{ov,lim.}$, see 7.1.2 (6)
Gap		$g \ge t_1 + t_2$

All the items above are verified by SCIA Engineer.

Not fulfilling any of the tests above will result in a displayed error after a chapter with geometry tests and termination of the check part! The exception is the test for maximum overlap limit. This exceptions will result in warning message in the validation part.

In SCIA Engineer:

5. Validity checks

EN 1993-1-8 Article 5.1.5 (5)

 $-0.55 * d_0 \le e \le 0.25 * d_0$

Location	Min limit[mm]	Max limit[mm]	Eccentricity[mm]	Result
Brace 1, Brace 2	-120,50	54,77	0,00	OK

M_{y,0,ecc} 0,00 kNm

Chord	Position[m]	Ratio[-]	$M_{y,0,ecc}[kNm]$
B115	3,000	0,50	0,00
B116	0,000	0,50	0,00

Note: Eccentricity is within the limits, therefore additional moments are taken into account for compression chord members.

B

EN 1993-1-8 Article 7.1.1 (4)

 $f_{y,i} \le 355MPa$

f_{y,i} <= 460MPa

Member	Property	Value[MPa]	Warning limit Result	Max limit Result
Chord	f _{v,0}	355,0	-	OK
Brace 1	f _{y,1}	355,0	OK	OK
Brace 2	f _{v,2}	355,0	OK	OK

EN 1993-1-8 Article 7.1.1 (5)

 $t_i >= 2.50 \text{ mm}$

Member	Property	Value[mm]	Result
Chord	t ₀	12,50	OK
Brace 1	t ₁	5,00	OK
Brace 2	t ₂	3,60	OK

EN 1993-1-8 Article 7.1.1 (5)

 $t_0 \le 25.00 \text{ mm}$

Member	Property	Value[mm]	Result
Chord	t ₀	12,50	OK

EN 1993-1-8 Article 7.1.2 (3)

30 deg \leq $\theta_i = \leq$ 90 deg

Member	Property	Value[deg]	Result
Brace 1	θ_1	45,00	OK
Brace 2	θ2	45.00	OK

EN 1993-1-8 Article 7.1.2 (5)

 $t_1 + t_2 \le g \le 12 * t_0$

Location	Min limit[mm]	Max limit[mm]	Gap[mm]	Result
Brace 1, Brace 2	8,60	150.00	39,49	OK

EN 1993-1-8 Article 7.4.1 (3) Table 7.1

 $0.20 \le d_i/d_0 \le 1.00$

Member	Property	Value[-]	Result
Brace 1	d₁/d₀	0,64	OK
Brace 2	do/do	0.52	OK

EN 1993-1-8 Article 7.4.1 (3) Table 7.1

 $10.00 \le d_0/t_0 \le 50.00$

Class 1 or 2

Chord	Loading effect	Property	Value	Cross-section	Result
B115	Compression	d ₀ /t ₀	17,53	OK	OK
B116	Compression	do/to	17,53	OK	OK

EN 1993-1-8 Article 7.4.1 (3) Table 7.1

Class 1 or 2

Member	Loading effect	Cross-section
Brace 1	Compression	OK

EN 1993-1-8 Article 7.4.1 (3) Table 7.1

 $d_i/t_i \le 50.00$

Member	Loading effect	Property	Value[-]	Result
Brace 2	Tension	d ₂ /t ₂	31,75	OK

11.3. Design resistance

The general criteria for steel member present in the hollow section joint are specified in EN 1993-1-8 Article 7.2.1 (1-2).

- The design values of the internal axial forces both in the brace members and in the chords at the
 ultimate limit state shall not exceed the design resistances of the members determined from EN
 1993-1-1. In order to check this the user should run steel check.
- The design values of the internal axial forces in the brace members at the ultimate limit state shall also not exceed the design resistances of the joints given in design tables as appropriate. This is calculated and verified by the hollow section joint.

In SCIA Engineer:

6. Design resistances

Υ	8,76	-
$\sigma_{p,Ed}$	123,3	MPa
np	0,35	-
k _p	0,86	-
$f_{y,0}$	355,0	MPa
to	12,50	mm
do	219,10	mm
k _q	1,76	-

6.1. Brace 1

Bra		
θ_1	45,00	deg
d_1	139,70	mm
В	0.58	-

$$d_1 \le d_0 - 2.00 t_0$$

Max limit[mm]	d ₁ [mm]	Result
194.10	139.70	OK

6.1.1. Design axial resistance

According to EN 1993-1-8 Article 7.4 Table 7.2

Chord	tace tailu	ıre	
N _{1,Rd}	987,19	kN	
			_

Punchi		ailure
N _{1,Rd}	1919,48	kN

 $N_{1,Rd} = 987,19 \text{ kN}$

6.1.2. Bending moment resistance

According to EN 1993-1-8 Article 7.4 Table 7.5

Chord f	ace failu	re
$M_{y,1,Rd}$	-	kNm
Mz,1,Rd	47,95	kNm

Punching	g shear f	ailure
$M_{y,1,Rd}$	78,03	kNm
M _{z,1,Rd}	92,68	kNm

 $M_{y,1,Rd} = 78,03 \text{ kNm}$ $M_{z,1,Rd} = 47,95 \text{ kNm}$ 6.1.3. Utilization

According to EN 1993-1-8 Article 7.4 Table 7.5

N _{1,Ed} / N _{1,Rd}	0,51
My, 1,Ed / My, 1,Rd	0,00
$M_{z,1,Ed} / M_{z,1,Rd}$	0,00
$N_{1,Ed} / N_{1,Rd} + [M_{y,1,Ed} / M_{y,1,Rd}]^2 + M_{z,1,Ed} / M_{z,1,Rd}$	0,51

6.2. Brace 2

Bra	Brace 2	
θ_2	45,00	deg
d_2	114,30	mm
β	0,58	-

 $d_2 \le d_0 - 2.00 t_0$

Max limit[mm]	d ₂ [mm]	Result
194,10	114,30	OK

6.2.1. Design axial resistance

According to EN 1993-1-8 Article 7.4 Table 7.2

Chord	face failu	ıre
N _{2,Rd}	846,61	kN

Punchi	ng <i>s</i> hear fai	lure
N _{2,Rd}	1570,49	kN

 $N_{2,Rd} = 846,61 \text{ kN}$

6.2.2. Bending moment resistance

According to EN 1993-1-8 Article 7.4 Table 7.5

Chord f	ace failu	ire
My,2,Rd	-	kNm
M _{z,2,Rd}	39,23	kNm

Punching	shear failure	
My,2,Rd	52,24	kNm
M _{z,2,Rd}	62,04	kNm

 $M_{y,2,Rd} = 52,24$ kNm $M_{z,2,Rd} = 39,23$ kNm 6.2.3. Utilization

According to EN 1993-1-8 Article 7.4 Table 7.5

N _{2,Ed} / N _{2,Rd}	0,47
$M_{v,2,Ed} / M_{v,2,Rd}$	0,00
M _{z,2,Ed} / M _{z,2,Rd}	0,00
$N_{2,Ed} / N_{2,Rd} + [M_{y,2,Ed} / M_{y,2,Rd}]^2 + M_{z,2,Ed} / M_{z,2,Rd}$	0,47

7. Results

Member	Unity check
Brace 1	0,51
Brace 2	0.47

11.3.1. Uniplanar joints

EN 1993-1-8 Article 7.4.2 (1) specifies that in brace member connections subject only to axial forces, the design internal axial force $N_{i,Ed}$ shall not exceed the design axial resistance of the welded joint $N_{i,Rd}$ obtained from appropriate design table.

EN 1993-1-8 Article 7.4.2 (2) specifies that brace member connections subject to combined bending and axial force should satisfy:

$$\frac{N_{i,Ed}}{N_{i,Rd}} + \left[\frac{M_{y,i,Ed}}{M_{y,i,Rd}}\right]^2 + \frac{\left|M_{z,i,Ed}\right|}{M_{z,i,Rd}} \le 1$$

With

N_{i,Ed} the design axial force

N_{i,Rd} the design axial force resistance M_{v,i,Ed} the design in-plane bending moment

 $M_{y,i,Rd}$ the design in-plane bending moment resistance $M_{z,i,Ed}$ the design out-of-plane bending moment

M_{z,i,Rd} the design out-of-plane bending moment resistance

11.3.2. Chord stress

For the calculation of the stresses in chord member, used by the joint design routine, the extended formulas to those given in EN 1993-1-8 Article 7.2.1 (3) are used in SCIA Engineer:

$$\sigma_{p,Ed} = rac{N_{p,Ed}}{A_0} + rac{|M_{y,0,Ed}|}{W_{el.v.0}} + rac{|M_{z,0,Ed}|}{W_{el.z.0}}$$

$$\sigma_{0,Ed} = rac{N_{0,Ed}}{A_0} + rac{|M_{y,0,Ed}|}{W_{el,v,0}} + rac{|M_{z,0,Ed}|}{W_{el,z,0}}$$

With

 $N_{\text{p,Ed}}$ maximum compressive normal force in the chord at a joint excluding the stress due to the

components parallel to the chord axis of the axial forces in the braces at that joint

N_{0,Ed} maximum compressive normal force in the chord at a joint

A₀ chord cross-section area

M_{y,0,Ed} design bending moment around y-axis in the chord at a joint

W_{el,y,0} elastic section modulus of chord cross-section around y-axis

M_{z,0,Ed} design bending moment around z-axis in the chord at a joint

W_{el,z,0} elastic section modulus of chord cross-section around z-axis

For the CHS-CHS hollow section joints the set of internal forces used in calculation of $\sigma_{p,Ed}$ is

presented in the chapter of internal forces in the detailed output.

11.3.3. Identification of brace members

Integer subscript i for joint members are described by EN 1993-1-8 Article 1.5 (4), where subscript i = 0 denotes a chord, subscripts i = 1, 2, 3 and 4 denote brace members.

In joints with two brace members, i = 1 normally denotes the compression brace and i = 2 the tension brace. For a single brace i = 1 whether it is subject to compression or tension.

The above also applies to SCIA Engineer with several extensions for:

- X and DY joints, where the first brace in the list uses subscript i = 1, the second brace in the list uses subscript i = 2
- DK joint with all members in either tension or compression, where the first brace in the list uses subscript i = 1, brace on the same side of chord as brace 1 uses i = 2, brace opposing to brace 1 uses i = 3 and brace opposing to brace 2 uses i = 4
- DK joint with tension or compression in opposing braces, where the first compression brace in the list uses subscript i = 1, brace on the same side of chord as brace 1 uses i = 2, brace opposing to brace 1 uses i = 3 and brace opposing to brace 2 uses i = 4

As noted above, in some joint configurations the identification of braces depends on the actual internal forces present in the members. Following the specifications of EN 1993-1-8 Article 7.4.2 Table 7.6 certain combinations of internal forces may not be designable according to EN 1993-1-8 and will result in unity check of 999. This also applies to K and N joint configurations when loading effect on both braces is both tensile or compressive.

If zero internal forces are found on both braces in a K or N joint configurations for a certain combination, such combination will be evaluated with zero unity check and a note will be displayed in the detailed output.

11.3.4. Welded joints between CHS members

Provided that the geometry of the joints is within the range of validity given in EN 1993-1-8 Article 7.4.1 Table 7.1, the design resistances of uniplanar welded joints between circular hollow section members may be determined using EN 1993-1-8 Article 7.4.2. For joints within the range of validity given in Table 7.1, only chord face failure and punching shear need be considered. The design resistance of a connection should be taken as the minimum value for these two failure modes.

11.3.4.1. Axial force resistance

Design axial resistances of welded joints between CHS brace members and CHS chords is calculated according to EN 1993-1-8 Article 7.4.2 Table 7.2 and Table 7.6.

11.3.4.2. Bending moment resistance

Design resistance moments of welded joints between CHS brace members and CHS chords is calculated according to EN 1993-1-8 Article 7.4.2 Table 7.5.

11.3.5. Special types of welded joints

As specified by EN 1993-1-8 Article 7.4.2 (5), the special types of welded joints indicated in Table 7.6 should satisfy the appropriate design criteria specified for each type in that table.

Two combinations of internal forces are supported for DK joint configurations:

• All bracing members should always be in either compression or tension. Condition given by the table was modified and an additional joint unity check is calculated as.

$$rac{|N_{1-3,Ed}| * \sin heta_{1-3}}{N_{x,Rd} * \sin heta_x} + rac{|N_{2-4,Ed}| * \sin heta_{2-4}}{N_{x,Rd} * \sin heta_x} \leq 1$$

With

 $N_{1-3,Ed}$ design normal force brace 3 average value of in 1 and brace brace and chord member for brace 1 and brace 3 θ_{1-3} angle between the N₂₋₄.Ed average value of design normal force in brace 2 and brace 4 angle between the brace and chord member for brace 2 and brace 4 N_{x,Rd}*sinθ_x maximum vertical component of brace resistance determined from all braces

 Opposing braces either in tension or compression. An additional joint unity check is calculated for cases when there are gaps at both sides of the chord as.

$$\left(rac{N_{0,Ed}}{N_{pl,0,Rd}}
ight)^2+\left(rac{V_{0,Ed}}{V_{pl,0,Rd}}
ight)^2\leq 1$$

$$N_{0,Ed} = rac{N_{left,Ed} + N_{right,Ed}}{2}$$

$$N_{pl,0,Rd} = rac{f_{y,0}*A_0}{\gamma_{M5}}$$

$$V_{0,Ed} = Max(|N_{1-3,Ed}| * \sin \theta_{1-3}; |N_{2-4,Ed}| * \sin \theta_{2-4})$$

$$V_{pl,0,Rd} = rac{f_{y,0}*A_{v,0}}{\sqrt{3}*\gamma_{M5}}$$

$$A_{v,0}=rac{2*A_0}{\pi}$$

With

N_{0,Ed} design normal force in the section

 $N_{\text{left,Ed}}$ design normal force in the chord from the left section at the joint $N_{\text{right,Ed}}$ design normal force in the chord from the right section at the joint

N_{pl,0,Rd} plastic normal force resistance of the chord

f_{v,0} yield strength of the chord material

A₀ chord cross-section area

y_{M5} partial safety factor for the resistance of joints

 $V_{0,Ed}$ design shear force in the section

N_{1-3,Ed} average value of design normal force in brace 1 and brace 3

 θ_{1-3} angle between the brace and chord member for brace 1 and brace 3

N_{2-4,Ed} average value of design normal force in brace 2 and brace 4

 θ_{2-4} angle between the brace and chord member for brace 2 and brace 4

V_{pl,0,Rd} plastic shear force resistance of the chord

A_{v,0} chord cross-section shear area

11.3.6. Design of welds

Calculation of weld size is based on the Ref. [35] - ECCS N° 126, where the formula is derived for double fillet weld. Since only one weld will be present on the brace member, the result value has to be multiplied by 2. The final formula for weld size used for each brace is derived as:

$$a \geq 2*rac{f_y*eta_w*\gamma_{M2}}{\sqrt{2}*f_u*\gamma_{M0}}*t$$

With

f_y yield strength of the brace material

fu ultimate tensile strength of the brace material

3w correlation factor given by EN 1993-1-8 Article 4.5.3.2 TAble 4.1

 γ_{M0} partial safety factor for material γ_{M2} partial safety factor for welds thickness of the brace

The weld size is calculated separately for all braces, is rounded up and compared with the minimum value from the setup. The final weld size is maximum of these two values.

In SCIA Engineer:

8. Welds

Member	t[mm]	f _v [MPa]	f _u [MPa]	βw	a _{calc} [mm]	a _{min} [mm]	a[mm]
Brace 1	5,00	355,0	490,0	0,90	2,88	3,00	3,00
Brace 2	3,60	355,0	490,0	0,90	2,07	3,00	3,00

12. References and literature

[1] Eurocode 3

Design of steel structures Part 1 - 8 : Design of joints EN 1993-1-8: 2005

[2] SCIA Engineer Steel_Connections_Theory_enu.pdf

Theoretical Background of SCIA Engineer

Release: 13.0